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Abstract — Based on recent published articles, the
growth of genomic data has overtaken and outpaced both
performance improvements of storage technologies and
processing power due to the revolutionary advancements
of next generation sequencing technologies. By bringing
down the costs and increasing throughput by many orders
of magnitude with sequencing technologies, data is
doubling every 9 months resulting in the exponential
growth of genomic data in recent years. However, data
analysis becomes increasingly difficult and can be
prohibitive, as existing bioinformatics tools developed in
the past decade focus mainly on desktops, workstations
and small clusters that have limited capabilities.
Improving the performance and scalability of such tools
is critical to transforming ever-growing raw genomic data
into  biological knowledge containing invaluable
information directly related to human health. This paper
describes a new software application which includes
optimization techniques improving the scalability of a
most widely used bioinformatics tool "PSI-BLAST" on
advanced parallel architectures, pushing the envelope of
biological data analysis. We show that our improvements
allow near-linear scaling to tens of thousands of
processing cores, up to the maximum non-capability size
on current petaflop supercomputers. This new tool
increases by 5 orders of magnitude the amount of
genomics data that can be processed per hour.

1 Introduction

The novel genomic data generated by sequencing
machines are processed through various bioinformatics
tools to become annotated and deposited into databases.
Most of these tool packages consist of a series of
sequence similarity search tools for annotation, since
sequence similarities may be the consequence of
structural, functional, and evolutionary relationships
between the sequences. From the alignment of two
sequences one can infer the evolutionary relationship,
functional domains shared between proteins, and
transcription-factor binding sites for DNA sequences. A
most widely used tool for such comparisons is Basic
Local Alignment Search Tool (BLAST) [1,2]. There are
many implementation of the BLAST algorithm with the
implementation by the National Center for
Biotechnology Information (NCBI) being the most
popular. Also there are many programs within NCBI
BLAST for both nucleotide and protein sequence
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similarity searches.

Nucleotide sequences have only four bases
(ATGC), whereas protein sequences consist of 20 amino
acids (AAs), thus resulting in a larger variety of sequence
characters with increased complexity which makes it
easier to detect patterns of sequence similarity between
protein sequences when compared to DNA sequences [3].
Thus protein sequence database searches yield more
significant matches when compared to DNA sequence
databases for a specific protein sequence [4]. This paper
focuses on one particular protein sequence search tool
known as Position Specific Iterative BLAST (PSI-
BLAST) [2] as it is a most widely used tool known for its
sensitivity and robustness. PSI-BLAST uses the gapped
protein search program known as BLASTP for searching
the query protein sequence against the protein database.
The first iteration of PSI-BLAST is with the standard
substitution matrix, a matrix containing values
proportional to the probability that one amino acid is
replaced by another amino acid for all pairs of amino
acids [1, 2]. Once proteins similar to the query sequence
(known as relatives) are found, PSI-BLAST constructs a
profile and multiple alignments based on these relatives.
This profile is then compared to the protein database to
seek local alignments using the BLASTP program. In the
second iteration, once the local alignments are
constructed, PSI-BLAST estimates their statistical
significance to find new relatives. Now a new profile is
generated and PSI-BLAST iterates using this new profile.
The process is repeated for a given number of iterations
or until no new relatives or protein sequence matches are
found thus reaching convergence [2,5].

These PSI-BLAST runs are both
computationally intensive and data intensive operations
taking anywhere from a few seconds to tens of minutes
based on the size of the query sequences and the size of
the database against which the query is searched. There
are many implementations of the parallelized BLAST
tool using either BLASTp or BLASTn functions in
particular. These parallelizations incorporate either
database partitioning techniques such as mpiBLAST [6]
and pioBLAST [7] or query sequence partitioning
techniques as seen in other implementations [8,9] or use
MapReduce-MPI library to split work [10]. Previous
work on IBM’s Blue Gene/L even demonstrated



scalability up to 32,768 processors combining both
techniques simultaneously [11]. But due to the iterative
nature and complexities in the parallelization of PSI-
BLAST, there are no effective parallel implementations
for PSI-BLAST. Thus there is an urgent need to
parallelize PSI-BLAST to keep up with the exponential
growth [12] of genomic data. In our approach we used a
combination of threads and MPI to parallelize PSI-
BLAST to tens of thousands of cores, simultaneously
retaining the core original functionality of the BLAST
code on the Kraken supercomputer. We also identify a
number of important performance issues, and
demonstrate that our improvements allow near-linear
scaling to 48,304 cores and beyond. Specifically, we find
the following components to be critical for effective
scalability of PSI-BLAST: 1) efficient database
distribution; 2) intelligent, hierarchical, dynamic load
balancing; and 3) high-throughput buffered parallel 1/O
of resultant data, as described in detail in the following
sections.

2 Methods

2.1 Wrapping of NCBI BLAST

During the process of improving the scalability of PSI-
BLAST, great care was taken to ensure that our updated
version of NCBI's tool can be trusted to produce accurate
and correct results. Additionally, the NCBI code base is
quite large, on the order of 1.3 million lines of source
code; it is desirable to make as few changes as possible
to this massive collection of code [13]. To this end, we
create a wrapper for NCBI's PSI-BLAST tool blastpgp
which requires a very small number of changes to the
original code. This wrapper serves to handle the inputs
and outputs of PSI-BLAST in an efficient manner,
leaving the core of the application untouched. This is
accomplished through the use of a custom 1/O library
named stdiowrap to redirect the inputs and outputs
directly to and from the blastpgp program, as well as a
hybrid MPI / threaded wrapper named mcw (for the three
levels of its hierarchical design: master, controller, and
worker) to manage job control and 1/0 on the large scale.
Together, the small scale wrapper stdiowrap and large
scale wrapper mcw allow the existing NCBI PSI-BLAST
to scale to core counts never before achievable.

2.2 Wrapper: stdiowrap

The stdiowrap library which directly interacts with
NCBI's code implements a subset the C language's
standard input and output routines, as found in the
common stdio.h include file. When our replacement 1/0
file stdiowrap.h is included in the NCBI source code and
the NCBI source is linked against the stdiowrap.o object,
the inputs and outputs of blastpgp are automatically
redirected to operate on a number of shared memory
segments in RAM, rather than with files which would
traditionally be located on disk. This allows the NCBI
code to continue to operate as if it was working with
files, while all traditional disk operations now take place
in memory instead. This is a critical component of our
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optimization, as operations on memory are significantly
faster than those on disk. While stdiowrap manages the
interaction between PSI-BLAST and the shared memory
segments holding input and output data, it is up to the
MPI / threaded wrapper mcw to then manage interaction
between the shared memory segments and the actual
filesystem.

2.3 Wrapper: mcw

The large-scale wrapper is named mcw for the three
levels of its hierarchical design: Master, Controller, and
Worker. Its primary job is to efficiently distribute the
sequence database and query sequences to those in need,
to setup and manage the shared memory segments that
are used by PSI-BLAST through the stdiowrap interface,
and to quickly process the resultant output data from the
search processes. The tasks of mcw are accomplished
through the use of a hierarchical design with three levels
as depicted in Figure 1 and described in detail in later
sections.

Figure 1: The Master distributes blocks of query
sequences to Controllers which distribute to Workers
which run PSI-BLAST.
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Figure 2: The Workers send result data to Controllers
which compress and buffer the data before writing it to
disk in parallel.

24 Master

The master is positioned at the top of the hierarchy and is
responsible for distributing the sequence database as well
as the query sequences. Use of a single master is desired,
as long as the master is able to keep up with the demand
for work from the subordinates in need. This is because
it is typically wasteful to use processing time on
managerial processes; CPU time is better spent on the
core PSI-BLAST computation. When a job first starts,
the needed sequence database is loaded from disk by the



while (1):
request = get_work_request_from_controllers();
num_blocks = request.num_requested *
PREFETCH_AGGRESSIVENESS
work_unit = get_next_sequence_blocks (num_blocks );
if ( work_unit == NO_MORE_WORK ) {
break;
}
send_work_to_controller (request. controller,
work_unit) ;

Figure 3: Pseudocode showing high-level behavior of
the Master process operating as an on-demand work
server.

master into memory and then broadcast to all nodes in
need through a single collective MPI call.  This
distribution is very efficient and scales logarithmically in
the number of nodes. After the database has been sent to
the nodes, the master begins to act as a work distribution
server, where work is sent as precompressed blocks of
FASTA query sequences [14]. The controllers,
occupying the level just below the master in the
hierarchy, will request work units from the master when
they desire more work. The master then responds to
requests for work and forwards blocks of compressed
work units to the requesting controllers. This on-demand
request / response architecture helps to ensure an even
load balance as work units are only sent to controllers
which need them. Additionally, to help reduce load
imbalance toward the end of the job when some cores
may be idle while others are finishing the last bits of
work, the master transitions from sending longer query
sequences at the start of a job to sending shorter query
sequences toward the end of a job. This sequence
distribution order is utilized because longer sequences
take more time to process, as well as differ more in
processing time than shorter sequences in the first
iteration of PSI-BLAST. The high-level operation of the
master during the distribution of work units is depicted in
Figure 3.

2.5 Controller

The controllers occupy the middle level of the hierarchy
and mediate between the workers on one hand and the
master and filesystem on the other. Each controller is
composed of two threads, 1) the controller thread which
mediates between the workers and master and 2) a writer
thread which is responsible for processing the resultant
data from the workers and ultimately writing the data to
disk. The controller thread asks for work from the master
on behalf of the worker threads, and tries to keep its local
work queue full for the workers. After the initial startup
period when controllers fill their local work queue, the
controllers try to keep their local work queue full by
prefetching from the master when needed so that the
worker threads never have to wait for additional work.
After the initial startup period, the goal is hide all latency
of interaction with the master from the worker threads
and PSI-BLAST computations. This managerial role of
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while (1):
request = get_work_request_from workers() ;
if ( workbuffer. num_queued < NCORES ) {
num_blocks = NCORES - workbuffer. num_queued;
work_unit =
get_work_blocks_from_master (num_blocks) ;
if ( work_unit == NO_MORE_WORK ) { break; }
add_work_to_buffer (workbuffer, work_unit);
}
send_work_to_worker (
take_work_from_buffer (workbuffer)) ;
Figure 4a: Pseudocode showing (a) the work
management process employed by the Controller
threads

while(1):
output = wait_for_output_from_any_BLAST() ;
add_output_to_uncompressed_buffer (output) ;
if ( is_full (uncompressed_buffer) ) {
coutput = compress (uncompressed_buffer) ;
add_output_to_compressed_buffer (coutput) ;
clear_buffer (uncompressed_buffer) ;
if ( is_full (compressed_buffer) ) {
write (compressed_buffer) ;
clear_buffer (compressed_buffer) ;

}
}

Figure 4b: Pseudocode showing the two-stage
buffering process employed by the writer thread
accompanying each Controller.

the controller is depicted in Figure 4a.

When the worker threads produce resultant data
from the PSI-BLAST search, they pass this data to the
writer thread of the controller on the local node, by
performing a simple memcpy() operation. This writer
thread employs a two-stage buffering process whereby
the workers fill the first buffer with the resultant
uncompressed XML data as output by NCBI's PSI-
BLAST process. We chose the XML output format as it
contains all the required data for complete analysis when
compared to other output formats that do not include all
available data from the PSI-BLAST search process.
When the first buffer holding uncompressed data is full,
it is compressed and moved to the second buffer which
holds compressed data in the form of “records”. Each
record consists of a four byte size field followed by a
compressed block of XML data with a length matching
that in the preceding size field. Once this second buffer
holding compressed data is full, it is flushed to disk in
parallel utilizing a distributed filesystem if present. This
process is depicted in Figure 2 with pseudocode in Figure
4b. Additionally, the output files to which data is written
are arranged in a hierarchical directory structure which
allows parallel use of the object storage targets which
form the back end of the distributed Lustre filesystem
used on Kraken [15,16]. Finally, the output files were
configured with the optimal stripe count of one, as a file-
per-processes output scheme is utilized. While some of



these enhancements were designed with the Luster
filesystem in mind, most should be compatible with other
distributed and networked filesystems as well.

2.6 Worker

The workers are threads occupying the lowest level of
the hierarchy.  These threads are responsible for
acquiring work from their local controller, installing this
work in the form of input query sequences into the
appropriate shared memory segments on their node, and
launching the actual PSI-BLAST application, blastpgp.
When the PSI-BLAST process is finished processing its
input query sequences and writing the result to the output
shared memory segment, the worker then copies the
resultant data from the shared memory segment into the
output buffer of the writer thread on the node. This
architecture allows the PSI-BLAST computation to
proceed continuously as long as the controller thread is
able to keep the local work queue full by prefetching
from the master and the writer thread is able to flush the
resultant data to disk by means of parallel 1/0 to a
distributed filesystem such as LustreFS. The high-level
operation of the workers is depicted in the Figure 5.

while (1):
work_unit = get_work_block_from_controller();
if ( work_unit == NO_MORE_WORK ) {
break;
}
output = run_blast_search(work_unit) ;
copy_data_to_writer_thread(output) ;

Figure 5: Pseudocode showing the high-level
operation of the Worker threads.

2.7 Memory Subsystem Enhancements

In addition to the stdiowrap and mcw wrappers, a number
of other enhancements were investigated which provide
the PSI-BLAST process with additional speed
improvements. First, due to the limited amount of RAM
available on each compute node of the Kraken
supercomputer (16 GB), making the most efficient use of
this memory is critical. To this end, we store a single
copy of the sequence database per node in a shared
memory segment for the duration of all sequence
searches performed on the node, unlike the serial version
of PSI-BLAST which can load the database from disk
multiple times. Further, this single shared copy of the
database allows all PSI-BLAST processes on a given
node access to the same database, providing a twelve
times increase in effective memory capacity for holding
the sequence database.

Additionally, extensive profiling and code
tracing efforts performed on NCBI's blastpgp software
show that the PSI-BLAST processes memory maps the
sequence database into its virtual address space and then
scans the sequence database in memory in a roughly
linear fashion from low addresses to high addresses.
This behavior results in the database being loaded into
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memory from disk through a large number of page-faults
as the operating system loads pages one at a time into
memory on behalf of the user processes as they accesses
different areas of the sequence database. This page-fault
based loading mechanism is suboptimal as it typically
results in many tiny reads to the filesystem. This
behavior is depicted in Figure 6a.

mmap(DB) stack
A b A A b A A b b A h b hA
T L U I U OXFFFFFE

code malloc() |---

0x0

TLB Misses

Figure 6a: The default page size results in many TLB
misses as the database is scanned in a linear fashion.
Worse, the default implementation can cause not only a
TLB miss, but a page fault on every 4 KB page
boundary as well.

code malloe() |-+ mmap(DB) +++ | stack
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Figure 6b: 2 MB pages drastically reduce the number
of TLB misses, and preloading the database into
memory also solves the issue of slow page-fault based
loading. In this figure, the two output buffers used by
the controller are part of the malloc() section.

Further, by preloading the database into a shared
memory segment all at once through the use of a single
system call, this page-fault based loading scheme is
avoided. Also, the shared memory segments used to hold
the sequence database can be backed by 2 MB large
pages rather than the default 4 KB pages. This
enhancement better utilizes the Translation Look-aside
Buffer (TLB), a hardware cache which translates virtual
program addresses into absolute physical hardware
addresses. When using the default small page size, the
linear scan can cause a TLB cache miss on every 4 KB
boundary. By utilizing larger 2 MB pages, TLB cache
misses can be drastically reduced, as depicted in Figure
6b. In our testing, the use of large pages can reduce the
processing time of PSI-BLAST by 15% to 60% in a
number of real world cases, depending on the search
parameters used.

2.8 Output I/0 Enhancements

Past work with the mcw wrapper and a single iteration of
PSI-BLAST has highlighted a number of 1/O schemes
which can significantly affect the performance of output
1/0. Our original mcw version used an on-demand output
scheme, where resultant XML data was processed and
written to disk immediately when available. As
described earlier in this paper, we now employ a two-
stage buffering process, where data is flushed from
buffers when the buffers are full, rather than on-demand.
This improvement brings substantial increases in output
bandwidth as well as a more regular and predictable



output time. Figures 7a and 7b as well as Table 1
highlight this dramatic increase in 1/O performance.

Initial Optimized

Avg. Write Time (s) 10.47 0.30
Std. Deviation (s) 8.36 1.06
Bandwidth (MB/s) 16.04 466.67

Table 1: Comparison between the initial and optimized
versions of our mcw implementation shows an increase in
output bandwidth of 2809%.
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Figure 7a: Total time spent writing data by each of the
writer threads in the first mcw version running one
iteration of PSI-BLAST.

60
" PSI-BLAST Output Time -+

@
2 40 .
3
1
L
o - + .
£ 30
=
E
g 20 -+ T
o
10 r B
.:..

1536
MPI Rank
Figure 7b: Time spent writing data by writer threads in
the improved mcw version. Not only is total output time
decreased, but times are more uniform as well.

3 Experimental Results
3.1 Experimental Platform and Datasets
Tests were performed on the National Center for

Computational ~ Sciences'  supercomputer,  Kraken.
Kraken is a Cray XT5 machine consisting of 112,896
AMD Opteron compute cores at 2.6 GHz in 9,408 nodes
with 147 TB of memory [16]. The sequence database
used was the nr database containing non-redundant
protein sequences from diverse taxa. The nr database
was obtained from the National Center for Biotechnology
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Information (NCBI) in April 2011 and contains
13,663,181 sequences consisting of a total of
4,688,826,815 amino acids. When formatted for use with
NCBI's PSI-BLAST, the nr database totals 11 GB. The
query sequences consisted of a carefully selected subset
of the database searched against. This subset was
selected to be fair in the sense that the selected sequences
were of an intermediate length and were of moderate
computational complexity.

3.2 Scalability Results

Due to the iterative nature of the PSI-BLAST algorithm
there is a large variation in search time among different
query sequences, even among sequences with similar
lengths. Due to this wide divergence in processing times,
we adopt the strong scaling methodology to demonstrate
the scalability of PSI-BLAST with our mcw wrapper.
This is done because the same input sequences will be
used for every test, avoiding the issue of wide divergence
of processing times that could skew results if utilizing the
weak scaling methodology that uses different input query
sequences for jobs running with different numbers of
cores. Figure 8 shows a number of query sequences —
each with a length of 500 amino acids — and their
runtimes. This unpredictability of processing time of
sequences with PSI-BLAST supports the need for an on-
demand work distribution architecture that can actively
respond to unpredictability and changes in workload
distribution.
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Figure 8: Graph of the search time spent processing PSI-
BLAST on selected 150 sequences with 500 AAs from
the nr dataset. The runtime is not particularly predictable
and varies from a minimum of 548 seconds to a
maximum of 4,282 seconds — nearly an order of
magnitude — in our testing with query sequences of equal
length.

Strong Scaling Tests

These tests are done to show how a fixed set of query
sequences used with PSI-BLAST perform with differing
numbers of cores. This methodology can be seen as a
stronger test of scalability, as the same exact input file is
used in each test, and the only variable changing between
tests is the number of cores used to processes the input
data. Results from this testing methodology shows near



linear scalability using HSPp-BLAST which are included
in Figure 9.

100000

HSPp-BLAST Time (seconds)
Ideal Time (seconds)

10000 | T .

Time (seconds)

18432

1000 . ;
2304 4608 9216

Core Count

Figure 9: Graph showing scalability of our improved
PSI-BLAST on NICS's Kraken utilizing the strong
scaling methodology, where each test uses the same
query file with 230 million amino acid (million
sequences). The red line is derived from experimental
runs while the green line represents ideal scaling from
2,304 cores. Currently we can only run 24 hour jobs on
Kraken and thus we cannot submit jobs with core count
smaller than our smallest job shown above which takes
close to 24hours to finish.
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4 Conclusion

This paper demonstrates the use of efficient 1/O
management along with dynamic load balancing that are
the key components of scaling PSI-BLAST to tens of
thousands of cores which was previously considered
computationally prohibitive. By using shared memory,
large pages, and buffering techniques we were able to
improve the performance of the application on a single
core by up to 60% and scale this to tens of thousands of
cores, thus improving the overall performance by many
orders of magnitude. The results show near linear
scalability achieved by this approach while at the same
time retaining the original functionality of the NCBI
BLAST code. With this approach one can analyze
millions of sequences using hundreds of thousands of
cores on supercomputers in hours when compared to
months or even years of computing on conventional
clusters, which can facilitate very large scale genomic
data analysis for rapid novel knowledge discovery. We
have generated HSP-NCBI module with “blastall”
function on Kraken supercomputer which is currently
available to all user and will be adding psi-blast function
here in future.
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