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Abstract – Based on recent published articles, the 
growth of genomic data has overtaken and outpaced both 
performance improvements of storage technologies and 
processing power due to the revolutionary advancements 
of next generation sequencing technologies. By bringing 
down the costs and increasing throughput by many orders 
of magnitude with sequencing technologies, data is 
doubling every 9 months resulting in the exponential 
growth of genomic data in recent years. However, data 
analysis becomes increasingly difficult and can be 
prohibitive, as existing bioinformatics tools developed in 
the past decade focus mainly on desktops, workstations 
and small clusters that have limited capabilities. 
Improving the performance and scalability of such tools 
is critical to transforming ever-growing raw genomic data 
into biological knowledge containing invaluable 
information directly related to human health. This paper 
describes a new software application which includes 
optimization techniques improving the scalability of a 
most widely used bioinformatics tool "PSI-BLAST" on 
advanced parallel architectures, pushing the envelope of 
biological data analysis. We show that our improvements 
allow near-linear scaling to tens of thousands of 
processing cores, up to the maximum non-capability size 
on current petaflop supercomputers.  This new tool 
increases by 5 orders of magnitude the amount of 
genomics data that can be processed per hour. 
 
1 Introduction 
The novel genomic data generated by sequencing 
machines are processed through various bioinformatics 
tools to become annotated and deposited into databases. 
Most of these tool packages consist of a series of 
sequence similarity search tools for annotation, since 
sequence similarities may be the consequence of 
structural, functional, and evolutionary relationships 
between the sequences. From the alignment of two 
sequences one can infer the evolutionary relationship, 
functional domains shared between proteins, and 
transcription-factor binding sites for DNA sequences. A 
most widely used tool for such comparisons is Basic 
Local Alignment Search Tool (BLAST) [1,2]. There are 
many implementation of the BLAST algorithm with the 
implementation by the National Center for 
Biotechnology Information (NCBI) being the most 
popular. Also there are many programs within NCBI 
BLAST for both nucleotide and protein sequence 

similarity searches. 
 
Nucleotide sequences have only four bases 

(ATGC), whereas protein sequences consist of 20 amino 
acids (AAs), thus resulting in a larger variety of sequence 
characters with increased complexity which makes it 
easier to detect patterns of sequence similarity between 
protein sequences when compared to DNA sequences [3]. 
Thus protein sequence database searches yield more 
significant matches when compared to DNA sequence 
databases for a specific protein sequence [4]. This paper 
focuses on one particular protein sequence search tool 
known as Position Specific Iterative BLAST (PSI-
BLAST) [2] as it is a most widely used tool known for its 
sensitivity and robustness. PSI-BLAST uses the gapped 
protein search program known as BLASTP for searching 
the query protein sequence against the protein database. 
The first iteration of PSI-BLAST is with the standard 
substitution matrix, a matrix containing values 
proportional to the probability that one amino acid is 
replaced by another amino acid for all pairs of amino 
acids [1, 2]. Once proteins similar to the query sequence 
(known as relatives) are found, PSI-BLAST constructs a 
profile and multiple alignments based on these relatives. 
This profile is then compared to the protein database to 
seek local alignments using the BLASTP program. In the 
second iteration, once the local alignments are 
constructed, PSI-BLAST estimates their statistical 
significance to find new relatives.  Now a new profile is 
generated and PSI-BLAST iterates using this new profile. 
The process is repeated for a given number of iterations 
or until no new relatives or protein sequence matches are 
found thus reaching convergence [2,5].   
 

These PSI-BLAST runs are both 
computationally intensive and data intensive operations 
taking anywhere from a few seconds to tens of minutes 
based on the size of the query sequences and the size of 
the database against which the query is searched. There 
are many implementations of the parallelized BLAST 
tool using either BLASTp or BLASTn functions in 
particular. These parallelizations incorporate either 
database partitioning techniques such as mpiBLAST [6] 
and pioBLAST [7] or query sequence partitioning 
techniques as seen in other implementations [8,9] or use 
MapReduce-MPI library to split work [10]. Previous 
work on IBM’s Blue Gene/L even demonstrated 
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scalability up to 32,768 processors combining both 
techniques simultaneously [11].  But due to the iterative 
nature and complexities in the parallelization of PSI-
BLAST, there are no effective parallel implementations 
for PSI-BLAST. Thus there is an urgent need to 
parallelize PSI-BLAST to keep up with the exponential 
growth [12] of genomic data. In our approach we used a 
combination of threads and MPI to parallelize PSI-
BLAST to tens of thousands of cores, simultaneously 
retaining the core original functionality of the BLAST 
code on the Kraken supercomputer. We also identify a 
number of important performance issues, and 
demonstrate that our improvements allow near-linear 
scaling to 48,304 cores and beyond. Specifically, we find 
the following components to be critical for effective 
scalability of PSI-BLAST: 1) efficient database 
distribution; 2) intelligent, hierarchical, dynamic load 
balancing; and 3) high-throughput buffered parallel I/O 
of resultant data, as described in detail in the following 
sections. 
 
2 Methods 
2.1 Wrapping of NCBI BLAST 
During the process of improving the scalability of PSI-
BLAST, great care was taken to ensure that our updated 
version of NCBI's tool can be trusted to produce accurate 
and correct results.  Additionally, the NCBI code base is 
quite large, on the order of 1.3 million lines of source 
code; it is desirable to make as few changes as possible 
to this massive collection of code [13].  To this end, we 
create a wrapper for NCBI's PSI-BLAST tool blastpgp 
which requires a very small number of changes to the 
original code.  This wrapper serves to handle the inputs 
and outputs of PSI-BLAST in an efficient manner, 
leaving the core of the application untouched.  This is 
accomplished through the use of a custom I/O library 
named stdiowrap to redirect the inputs and outputs 
directly to and from the blastpgp program, as well as a 
hybrid MPI / threaded wrapper named mcw (for the three 
levels of its hierarchical design: master, controller, and 
worker) to manage job control and I/O on the large scale.  
Together, the small scale wrapper stdiowrap and large 
scale wrapper mcw allow the existing NCBI PSI-BLAST 
to scale to core counts never before achievable. 
 
2.2 Wrapper: stdiowrap 
The stdiowrap library which directly interacts with 
NCBI's code implements a subset the C language's 
standard input and output routines, as found in the 
common stdio.h include file.  When our replacement I/O 
file stdiowrap.h is included in the NCBI source code and 
the NCBI source is linked against the stdiowrap.o object, 
the inputs and outputs of blastpgp are automatically 
redirected to operate on a number of shared memory 
segments in RAM, rather than with files which would 
traditionally be located on disk.  This allows the NCBI 
code to continue to operate as if it was working with 
files, while all traditional disk operations now take place 
in memory instead.  This is a critical component of our 

optimization, as operations on memory are significantly 
faster than those on disk.  While stdiowrap manages the 
interaction between PSI-BLAST and the shared memory 
segments holding input and output data, it is up to the 
MPI / threaded wrapper mcw to then manage interaction 
between the shared memory segments and the actual 
filesystem. 
 
2.3 Wrapper: mcw 
The large-scale wrapper is named mcw for the three 
levels of its hierarchical design: Master, Controller, and 
Worker.  Its primary job is to efficiently distribute the 
sequence database and query sequences to those in need, 
to setup and manage the shared memory segments that 
are used by PSI-BLAST through the stdiowrap interface, 
and to quickly process the resultant output data from the 
search processes.  The tasks of mcw are accomplished 
through the use of a hierarchical design with three levels 
as depicted in Figure 1 and described in detail in later 
sections.  

 
Figure 1: The Master distributes blocks of query 
sequences to Controllers which distribute to Workers 
which run PSI-BLAST. 
 

 
Figure 2: The Workers send result data to Controllers 
which compress and buffer the data before writing it to 
disk in parallel. 
 
2.4 Master 
The master is positioned at the top of the hierarchy and is 
responsible for distributing the sequence database as well 
as the query sequences.  Use of a single master is desired, 
as long as the master is able to keep up with the demand 
for work from the subordinates in need.  This is because 
it is typically wasteful to use processing time on 
managerial processes; CPU time is better spent on the 
core PSI-BLAST computation.  When a job first starts, 
the needed sequence database is loaded from disk by the 
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master into memory and then broadcast to all nodes in 
need through a single collective MPI call.  This 
distribution is very efficient and scales logarithmically in 
the number of nodes.  After the database has been sent to 
the nodes, the master begins to act as a work distribution 
server, where work is sent as precompressed blocks of 
FASTA query sequences [14].  The controllers, 
occupying the level just below the master in the 
hierarchy, will request work units from the master when 
they desire more work.  The master then responds to 
requests for work and forwards blocks of compressed 
work units to the requesting controllers.  This on-demand 
request / response architecture helps to ensure an even 
load balance as work units are only sent to controllers 
which need them.  Additionally, to help reduce load 
imbalance toward the end of the job when some cores 
may be idle while others are finishing the last bits of 
work, the master transitions from sending longer query 
sequences at the start of a job to sending shorter query 
sequences toward the end of a job.  This sequence 
distribution order is utilized because longer sequences 
take more time to process, as well as differ more in 
processing time than shorter sequences in the first 
iteration of PSI-BLAST.  The high-level operation of the 
master during the distribution of work units is depicted in 
Figure 3. 
 
2.5 Controller 
The controllers occupy the middle level of the hierarchy 
and mediate between the workers on one hand and the 
master and filesystem on the other.  Each controller is 
composed of two threads, 1) the controller thread which 
mediates between the workers and master and 2) a writer 
thread which is responsible for processing the resultant 
data from the workers and ultimately writing the data to 
disk.  The controller thread asks for work from the master 
on behalf of the worker threads, and tries to keep its local 
work queue full for the workers.  After the initial startup 
period when controllers fill their local work queue, the 
controllers try to keep their local work queue full by 
prefetching from the master when needed so that the 
worker threads never have to wait for additional work.   
After the initial startup period, the goal is hide all latency 
of interaction with the master from the worker threads 
and PSI-BLAST computations.  This managerial role of 

the controller is depicted in Figure 4a. 
 

When the worker threads produce resultant data 
from the PSI-BLAST search, they pass this data to the 
writer thread of the controller on the local node, by 
performing a simple memcpy() operation.  This writer 
thread employs a two-stage buffering process whereby 
the workers fill the first buffer with the resultant 
uncompressed XML data as output by NCBI's PSI-
BLAST process.  We chose the XML output format as it 
contains all the required data for complete analysis when 
compared to other output formats that do not include all 
available data from the PSI-BLAST search process.  
When the first buffer holding uncompressed data is full, 
it is compressed and moved to the second buffer which 
holds compressed data in the form of “records”.  Each 
record consists of a four byte size field followed by a 
compressed block of XML data with a length matching 
that in the preceding size field.  Once this second buffer 
holding compressed data is full, it is flushed to disk in 
parallel utilizing a distributed filesystem if present.  This 
process is depicted in Figure 2 with pseudocode in Figure 
4b.  Additionally, the output files to which data is written 
are arranged in a hierarchical directory structure which 
allows parallel use of the object storage targets which 
form the back end of the distributed Lustre filesystem 
used on Kraken [15,16].  Finally, the output files were 
configured with the optimal stripe count of one, as a file-
per-processes output scheme is utilized.  While some of 

while (1): 

  request    = get_work_request_from_controllers(); 

  num_blocks = request.num_requested * 

               PREFETCH_AGGRESSIVENESS; 

  work_unit  = get_next_sequence_blocks(num_blocks ); 

  if( work_unit == NO_MORE_WORK ) { 

    break; 

  } 

  send_work_to_controller(request.controller, 

                          work_unit); 
Figure 3: Pseudocode showing high-level behavior of 
the Master process operating as an on-demand work 
server. 

while (1): 

  request = get_work_request_from_workers(); 

  if( workbuffer.num_queued < NCORES ) { 

    num_blocks = NCORES – workbuffer.num_queued; 

    work_unit = 

            get_work_blocks_from_master(num_blocks); 

    if( work_unit == NO_MORE_WORK ) { break; } 

    add_work_to_buffer(workbuffer, work_unit); 

  } 

  send_work_to_worker( 

          take_work_from_buffer(workbuffer)); 
Figure 4a: Pseudocode showing (a) the work 
management process employed by the Controller 
threads 

while(1): 

  output = wait_for_output_from_any_BLAST(); 

  add_output_to_uncompressed_buffer(output); 

  if( is_full(uncompressed_buffer) ) { 

    coutput = compress(uncompressed_buffer); 

    add_output_to_compressed_buffer(coutput); 

    clear_buffer(uncompressed_buffer); 

    if( is_full(compressed_buffer) ) { 

      write(compressed_buffer); 

      clear_buffer(compressed_buffer); 

    } 

  } 
Figure 4b: Pseudocode showing the two-stage 
buffering process employed by the writer thread 
accompanying each Controller. 
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these enhancements were designed with the Luster 
filesystem in mind, most should be compatible with other 
distributed and networked filesystems as well.  
 
2.6 Worker 
The workers are threads occupying the lowest level of 
the hierarchy.  These threads are responsible for 
acquiring work from their local controller, installing this 
work in the form of input query sequences into the 
appropriate shared memory segments on their node, and 
launching the actual PSI-BLAST application, blastpgp.  
When the PSI-BLAST process is finished processing its 
input query sequences and writing the result to the output 
shared memory segment, the worker then copies the 
resultant data from the shared memory segment into the 
output buffer of the writer thread on the node.  This 
architecture allows the PSI-BLAST computation to 
proceed continuously as long as the controller thread is 
able to keep the local work queue full by prefetching 
from the master and the writer thread is able to flush the 
resultant data to disk by means of parallel I/O to a 
distributed filesystem such as LustreFS.  The high-level 
operation of the workers is depicted in the Figure 5. 

 
 
2.7 Memory Subsystem Enhancements 
In addition to the stdiowrap and mcw wrappers, a number 
of other enhancements were investigated which provide 
the PSI-BLAST process with additional speed 
improvements.  First, due to the limited amount of RAM 
available on each compute node of the Kraken 
supercomputer (16 GB), making the most efficient use of 
this memory is critical.  To this end, we store a single 
copy of the sequence database per node in a shared 
memory segment for the duration of all sequence 
searches performed on the node, unlike the serial version 
of PSI-BLAST which can load the database from disk 
multiple times.  Further, this single shared copy of the 
database allows all PSI-BLAST processes on a given 
node access to the same database, providing a twelve 
times increase in effective memory capacity for holding 
the sequence database. 
 

Additionally, extensive profiling and code 
tracing efforts performed on NCBI's blastpgp software 
show that the PSI-BLAST processes memory maps the 
sequence database into its virtual address space and then 
scans the sequence database in memory in a roughly 
linear fashion from low addresses to high addresses.  
This behavior results in the database being loaded into 

memory from disk through a large number of page-faults 
as the operating system loads pages one at a time into 
memory on behalf of the user processes as they accesses 
different areas of the sequence database.  This page-fault 
based loading mechanism is suboptimal as it typically 
results in many tiny reads to the filesystem.  This 
behavior is depicted in Figure 6a. 
 

Figure 6a: The default page size results in many TLB 
misses as the database is scanned in a linear fashion. 
Worse, the default implementation can cause not only a 
TLB miss, but a page fault on every 4 KB page 
boundary as well.   
 

Figure 6b: 2 MB pages drastically reduce the number 
of TLB misses, and preloading the database into 
memory also solves the issue of slow page-fault based 
loading. In this figure, the two output buffers used by 
the controller are part of the malloc() section. 
 

Further, by preloading the database into a shared 
memory segment all at once through the use of a single 
system call, this page-fault based loading scheme is 
avoided.  Also, the shared memory segments used to hold 
the sequence database can be backed by 2 MB large 
pages rather than the default 4 KB pages.  This 
enhancement better utilizes the Translation Look-aside 
Buffer (TLB), a hardware cache which translates virtual 
program addresses into absolute physical hardware 
addresses.  When using the default small page size, the 
linear scan can cause a TLB cache miss on every 4 KB 
boundary.  By utilizing larger 2 MB pages, TLB cache 
misses can be drastically reduced, as depicted in Figure 
6b.  In our testing, the use of large pages can reduce the 
processing time of PSI-BLAST by 15% to 60% in a 
number of real world cases, depending on the search 
parameters used. 
 
2.8 Output I/O Enhancements 
Past work with the mcw wrapper and a single iteration of 
PSI-BLAST has highlighted a number of I/O schemes 
which can significantly affect the performance of output 
I/O.  Our original mcw version used an on-demand output 
scheme, where resultant XML data was processed and 
written to disk immediately when available.  As 
described earlier in this paper, we now employ a two-
stage buffering process, where data is flushed from 
buffers when the buffers are full, rather than on-demand.  
This improvement brings substantial increases in output 
bandwidth as well as a more regular and predictable 

while (1): 

  work_unit = get_work_block_from_controller(); 

  if( work_unit == NO_MORE_WORK ) { 

    break; 

  } 

  output = run_blast_search(work_unit); 

  copy_data_to_writer_thread(output); 
Figure 5: Pseudocode showing the high-level 
operation of the Worker threads. 
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output time.  Figures 7a and 7b as well as Table 1 
highlight this dramatic increase in I/O performance. 
 

 Initial Optimized 

Avg. Write Time (s) 10.47 0.30 

Std. Deviation (s) 8.36 1.06 

Bandwidth (MB/s) 16.04 466.67 
Table 1: Comparison between the initial and optimized 
versions of our mcw implementation shows an increase in 
output bandwidth of 2809%. 
 

 
Figure 7a: Total time spent writing data by each of the 
writer threads in the first mcw version running one 
iteration of PSI-BLAST. 
 

 
Figure 7b: Time spent writing data by writer threads in 
the improved mcw version.  Not only is total output time 
decreased, but times are more uniform as well. 
 
3 Experimental Results 
3.1 Experimental Platform and Datasets 
Tests were performed on the National Center for 
Computational Sciences' supercomputer, Kraken.  
Kraken is a Cray XT5 machine consisting of 112,896 
AMD Opteron compute cores at 2.6 GHz in 9,408 nodes 
with 147 TB of memory [16].  The sequence database 
used was the nr database containing non-redundant 
protein sequences from diverse taxa.  The nr database 
was obtained from the National Center for Biotechnology 

Information (NCBI) in April 2011 and contains 
13,663,181 sequences consisting of a total of 
4,688,826,815 amino acids.  When formatted for use with 
NCBI's PSI-BLAST, the nr database totals 11 GB.  The 
query sequences consisted of a carefully selected subset 
of the database searched against.  This subset was 
selected to be fair in the sense that the selected sequences 
were of an intermediate length and were of moderate 
computational complexity. 
 
3.2 Scalability Results 
Due to the iterative nature of the PSI-BLAST algorithm 
there is a large variation in search time among different 
query sequences, even among sequences with similar 
lengths.  Due to this wide divergence in processing times, 
we adopt the strong scaling methodology to demonstrate 
the scalability of PSI-BLAST with our mcw wrapper.  
This is done because the same input sequences will be 
used for every test, avoiding the issue of wide divergence 
of processing times that could skew results if utilizing the 
weak scaling methodology that uses different input query 
sequences for jobs running with different numbers of 
cores.  Figure 8 shows a number of query sequences – 
each with a length of 500 amino acids – and their 
runtimes.  This unpredictability of processing time of 
sequences with PSI-BLAST supports the need for an on-
demand work distribution architecture that can actively 
respond to unpredictability and changes in workload 
distribution. 

 
Figure 8: Graph of the search time spent processing PSI-
BLAST on selected 150 sequences with 500 AAs from 
the nr dataset.  The runtime is not particularly predictable 
and varies from a minimum of 548 seconds to a 
maximum of 4,282 seconds – nearly an order of 
magnitude – in our testing with query sequences of equal 
length. 
 
Strong Scaling Tests 
These tests are done to show how a fixed set of query 
sequences used with PSI-BLAST perform with differing 
numbers of cores.  This methodology can be seen as a 
stronger test of scalability, as the same exact input file is 
used in each test, and the only variable changing between 
tests is the number of cores used to processes the input 
data.  Results from this testing methodology shows near 
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linear scalability using HSPp-BLAST which are included 
in Figure 9. 
 
 

 
Figure 9: Graph showing scalability of our improved 
PSI-BLAST on NICS's Kraken utilizing the strong 
scaling methodology, where each test uses the same 
query file with 230 million amino acid (million 
sequences).  The red line is derived from experimental 
runs while the green line represents ideal scaling from 
2,304 cores. Currently we can only run 24 hour jobs on 
Kraken and thus we cannot submit jobs with core count 
smaller than our smallest job shown above which takes 
close to 24hours to finish. 
 
4 Conclusion 
This paper demonstrates the use of efficient I/O 
management along with dynamic load balancing that are 
the key components of scaling PSI-BLAST to tens of 
thousands of cores which was previously considered 
computationally prohibitive. By using shared memory, 
large pages, and buffering techniques we were able to 
improve the performance of the application on a single 
core by up to 60% and scale this to tens of thousands of 
cores, thus improving the overall performance by many 
orders of magnitude. The results show near linear 
scalability achieved by this approach while at the same 
time retaining the original functionality of the NCBI 
BLAST code. With this approach one can analyze 
millions of sequences using hundreds of thousands of 
cores on supercomputers in hours when compared to 
months or even years of computing on conventional 
clusters, which can facilitate very large scale genomic 
data analysis for rapid novel knowledge discovery. We 
have generated HSP-NCBI module with “blastall” 
function on Kraken supercomputer which is currently 
available to all user and will be adding psi-blast function 
here in future. 
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