
fsmem: a library for memory augmentation using memory mapped files

Aaron D. Vose

Electrical Engineering and Computer Science

University of Tennessee

Knoxville, Tennessee 37919, USA

avose@utk.edu

Abstract

The “fsmem” (file system memory) library is designed to allow Linux applications that allocate memory based
on the malloc() interface to access more memory than is available in system RAM. This is accomplished by memory
mapping a large file on disk into the application’s address space, and then allowing the ptmalloc allocator to carve
up this large memory area into smaller blocks as needed.

1 Introduction

With the constantly increasing size of modern datasets, it is not uncommon for data intensive tools to run out of
available memory on common desktops, workstations, and servers. For example, tools for building phylogenetic trees
from multiple sequence alignments, such as PhyML [1] and RAxML [2], can require tens to hundreds of gigabytes of
memory to run on data sets involving only a few thousand species. While ten gigabytes of RAM is not uncommon
for high-end workstations, hundreds or thousands of gigabytes of RAM is simply not available in anything but the
most expensive high-end machines currently available. Thus, processing large datasets with common tools is often
impossible for many users.

A library has been created to allow these data and memory intensive applications to access orders of magnitude
more memory than was possible in the past, through the use of large file-based back-ends. While Linux swap
partitions can be used to increase the amount of memory available, doing so has some important drawbacks that
do not apply to the file-based approach. First, swap partitions typically need to be created and setup by a system
administrator with root access to the machine, while files can be created and managed by regular accounts with only
user-level permissions. Second, allocating space to swap partitions is a heavy operation that requires committing
disk resources to swap on a longer-term basis compared to the speed and ease with which files can be created and
removed.

2 Implementation

The current version of the fsmem library implements a very simple and fast form of a file-based back-end. First,
fsmem creates a single large file (defaults to 1 TB in size) at application start, memory maps it into the application’s
address space and then hands this single large block to version 3 of the ptmalloc allocator which carves off chunks
from this block as needed to satisfy malloc() requests. The ptmalloc allocator is a very fast and memory-efficient
allocator which has been used for years as a part of the core GNU/Linux libraries [3].

Accessible means exist to mitigate the performance issues associated with running off disk instead of RAM. First,
the operating system will use RAM as a cache for the disk-backed memory, by virtue of its efforts to keep commonly
accessed memory pages in RAM. Additionally, the use of a RAID0 array of fast disks such as SSDs (solid state
disks) can drastically improve throughput and random access speeds. For comparable price, SSDs provide an order
of magnitude more memory capacity than DRAM at a performance level that is acceptable for many applications.



3 Using fsmem

The fsmem library can be obtained online from http://www.aaronvose.com/fsmem. Once downloaded, there
are three steps to using the library with a desired malloc()-based application: (1) Compiling / building the file-system
back-end code, (2) Compiling / building the ptmalloc block allocator, and (3) Linking the produced libptmalloc3.a

file with the application needing access to large amounts of memory. It is important to note here that the application
needing access to large amounts of memory does not need to be rewritten to use a different memory allocation API
to take advantage of the increase in available memory. Simply linking with the produced libptmalloc3.a file will
cause the application to use the fsmem back-end to satisfy malloc() requests.

• Download the fsmem package:
> wget http://www.aaronvose.com/fsmem/fsmem-9-16-2012.tar.gz

• Untar the package:
> tar -zxvf fsmem-9-16-2012.tar.gz

• Build the fsmem back-end:
> cd fsmem-9-16-2012

> make

• Build the ptmalloc block allocator:
> cd ptmalloc3

> make

• Link your application against the produced libptmalloc3.a file.

Acknowledgments

This work was supported in part by the DOE Office of Science, Office of Biological and Environmental Research,
through the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center.

References

[1] S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel, “New algorithms and methods to
estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0,” Systematic biology, vol. 59,
no. 3, pp. 307–321, 2010.

[2] A. Stamatakis, T. Ludwig, and H. Meier, “Raxml-iii: a fast program for maximum likelihood-based inference of
large phylogenetic trees,” Bioinformatics, vol. 21, no. 4, pp. 456–463, 2005.

[3] “Wolfram gloger’s malloc homepage.” http://www.malloc.de/en/. Accessed: Aug/9/2012.


