Journal of Computational Science 9 (2015) 1-6

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

A case study of CUDA FORTRAN and OpenACC for an atmospheric
climate kernel

@ CrossMark

Matthew Norman®*, Jeffrey Larkin®, Aaron Vose¢, Katherine Evans?

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
b Nvidia, Santa Clara, CA, USA
¢ Cray Seattle, WA, USA

ARTICLE INFO ABSTRACT

Article history:
Available online 18 April 2015

The porting of a key kernel in the tracer advection routines of the Community Atmosphere Model -
Spectral Element (CAM-SE) to use Graphics Processing Units (GPUs) using OpenACC is considered in
comparison to an existing CUDA FORTRAN port. The development of the OpenACC kernel for GPUs was

Keywords: substantially simpler than that of the CUDA port. Also, OpenACC performance was about 1.5x slower than
OPEHACC the optimized CUDA version. Particular focus is given to compiler maturity regarding OpenACC imple-
gl&rl;l:te mentation for modern FORTRAN, and it is found that the Cray implementation is currently more mature
GPU than the PGI implementation. Still, for the case that ran successfully on PGI, the PGI OpenACC runtime

HPC was slightly faster than Cray. The results show encouraging performance for OpenACC implementation
compared to CUDA while also exposing some issues that may be necessary before the implementations
are suitable for porting all of CAM-SE. Most notable are that GPU shared memory should be used by future

OpenACC implementations and that derived type support should be expanded.

© 2015 Published by Elsevier B.V.

1. Introduction

This study considers the viability of using the OpenACC standard
as currently implemented in particular by the Cray and PGI com-
pilers from a best/easiest case perspective of an easily ported and
highly performant kernel in the atmospheric climate model CAM-
SE (Community Atmosphere Model - Spectral Element) [6,14,9],
a part of the ACME (Accelerated Climate Model for Energy) cou-
pled climate model code. CAM-SE is a capability-scale, IPCC-class
atmospheric climate model intended to simulate climate projec-
tions over large time scales. Based on the Spectral Element (SE)
method implemented on cubed-sphere topology, it is a highly
scalable code with minimal data communication across domain
decomposition boundaries. Run on a 14 km mesh, the code scales
successfully out to 14K nodes on the Titan supercomputer at
Oak Ridge National Laboratory. Given the acquisition of Graph-
ics Processing Units (GPUs) on each node of Titan, the tracer
advection routines of CAM-SE were ported to GPUs using CUDA
FORTRAN with good success [4,10]. This study begins the process of

* Corresponding author.
E-mail addresses: normanmr@ornl.gov (M. Norman), jlarkin@nvidia.com
(J. Larkin), avose@cray.com (A. Vose), evanskj@ornl.gov (K. Evans).

http://dx.doi.org/10.1016/j.jocs.2015.04.022
1877-7503/© 2015 Published by Elsevier B.V.

considering the use of OpenACC in porting more of CAM-SE’s run-
time profile to GPUs.

Thisisanimportant avenue to investigate because climate simu-
lation is always in need of better efficiency and greater computing
power. There has been a strong push to develop Global coupled
Climate Models (GCMs), particularly the atmospheric components,
with unprecedented horizontal resolution. Doing so has enabled
high-resolution simulations that capture and characterize the fre-
quency of tropical cyclones [2], improve the frequency of blocking
flow events [3], and improve tropical precipitation and circula-
tion [5,7]. These early results invite additional questions about
the interaction between small- and large-scale atmospheric fea-
tures on long-term, global scales. Some recent so-called “hero runs”
(performed at very high resolution) focused on capturing new
global-scale atmospheric behavior, and yet there are still plenty of
interesting climate questions to answer regarding smaller scales,
where extreme events involving precipitation and air quality, for
instance, occur.

Improving multi-scale interactions is a primary scientific focus
for next generation GCMs. We need to explore model sensitivity
at high resolution to better understand regional and global climate
variability. Also, multi-ensemble runs (either straightforwardly or
via a reduced parameter space exploration [1,11]) help validate
and characterize high resolution model results. Ensemble runs
introduce additional parallelism since each run can be performed

dx.doi.org/10.1016/j.jocs.2015.04.022
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.04.022&domain=pdf
mailto:normanmr@ornl.gov
mailto:jlarkin@nvidia.com
mailto:avose@cray.com
mailto:evanskj@ornl.gov
dx.doi.org/10.1016/j.jocs.2015.04.022

2 M. Norman et al. / Journal of Computational Science 9 (2015) 1-6

independently, and this could significantly reduce MPI overheads,
better utilize charged core-hours, and increase total utilization of
the target platform. More computing also enables so-called “super-
parameterization” schemes for greatly improved physical fidelity
in resolving the climatic influence of clouds [8]. Being on sepa-
rate grids, these models could also be run in parallel with the
main climate model for improved performance. Also, increasing
the number of vertical levels would be enabled by more comput-
ing power. Strong vertical sensitivities have led to hesitation in
increasing vertical levels while refining in the horizontal, and this
has resulted in an inconsistency between the dimensions. Several
studies have shown benefits in the mean climate with increased
vertical resolution [13,12].

Before considering all aspects of OpenACC porting, it needs to
be studied and documented whether OpenACC implementations in
current compilers are capable of competing with CUDA implemen-
tations. The benefits of OpenACCinclude better portability between
compilers and devices as well as greater ease in porting. The ease in
porting is due to many factors. First, the management of host and
device memories, including allocations, deallocations, and PCl-e
data movement between the two, can be managed more seamlessly
via directives. Also, low-level, device-specific considerations such
as shared memory usage and banking conflicts are removed in Ope-
nACC and placed in the compiler’s responsibility for management
rather than the user’s. Many inconveniences such as partitioning
work across GPU grids and blocks are made simpler as well during
kernel launches. When mature, OpenACC shows promise for greatly
easing the porting effort as well as increasing the available compil-
ers to choose from. Given that CUDA FORTRAN is implemented only
by PGI, OpenACC slightly improves portability since it is currently
implemented by PGI as well as Cray compilers, with more compilers
promised in 2015.

However, the standard is not mature in compiler implemen-
tation at this point. For instance, both Cray and PGI have certain
difficulties with transferring parts of FORTRAN derived types over
PCl-e using directives. The Cray compiler, through “deep copy” sup-
port, is more adept at correctly managing derived types onboard
the GPU, but it still has significant flaws in the implementation.
For instance, one cannot currently pass only part of a derived type
with either PGI or Cray implementations. The attempt at doing such
typically results in the transfer of the entire derived type rather
than just the subset one wishes to transfer, even if that subset is a
contiguous block of memory whose bounds are known at compile
time. These issues should be resolved in coming implementations,
but they mark key issues for OpenACC to resolve for many modern
FORTRAN codebases. Note that this is not necessarily an OpenACC
standard issue, as the standard itself does not currently address
the nuances of partial derived type transfers, the syntax involved,
or the expected behavior from an implementation. CUDA Unified
Memory may simplify the handling of complex data structures by
allowing them to be available both on the host and device, greatly
simplifying these data structures for both the compiler and the user.
Additionally, the OpenACC technical committee is in the process
of designing directives for better handling of complex data struc-
tures in a future version of the specification. At the time of writing,
however, neither are readily available.

The purpose of this paper, though, is to look past many of
the unresolved issues for a full OpenACC port and to ask a more
bounded and pointed question. How does OpenACC compare
against an existing CUDA FORTRAN implementation for a key ker-
nel in CAM-SE’s tracer transport routines in terms of runtime and
in terms of ease of porting? Granted, neither the OpenACC nor
the CUDA implementations may be entirely optimal, but they are
both attempts at porting from an experienced user of CUDA and
OpenACC with the help of vendor advice and support. Success-
ful handling of this kernel is a necessary but not sufficient step

in the path to a full port. It is something worth investigating in
depth.

2. Code and compiler discussion

The machine used in this study is Oak Ridge Leadership Com-
puting Facility’s Titan supercomputer, which has a 16-core AMD
interlagos processor and a Kepler K20x GPU on each node. CAM-SE
is a FORTRAN 90 codebase implemented with several mechanisms
of OpenMP parallelism (coarse grained or fine grained threading)
and MPI domain decomposition. Each MPI task operates on nelemd
columns of elements, and in the most widely used OpenMP imple-
mentation, the columns are chunked into parts, and each thread
operates on a separate chunk within an “omp parallel” clause.
Each column consists of n1ev vertical levels, and each vertical level
contains np xnp basis function coefficients to be updated. There are
gsize independent tracers to solve for. The kernel chosen for this
study is the beginning part of a routine called euler_step, which
performs the variational SE advection operator. The dimension
sizes are np=4, nlev=30, gsize=50, and nelemd=32. 32 columns
of elements per node represents the usual scaling limit for CAM-SE
when run in production mode at scale - the point at which MPI
waiting begins to dominate the runtime profile. In all, for this ker-
nel, there are npxnpxnlevxgsizexnelemd=768,000 independent
indices over. The CPU version of the kernel uses the coarse-grained
OpenMP implementation, which achieves an 11.5x speed-up on
Titan’s AMD Interlagos processors using 16 cores versus 1 core. So
the CPU code is a competitive comparison point when comparing
against the Kepler GPU performance.

The CPU code is given in Fig. 1. A CUDA kernel taken from the
existing implementation in the ACME codebase is also given in
Fig. 2. The derived types have been changed into single arrays by
placing nelemd as the last index. Note that the optimized CUDA
code is hardly recognizable, and only then because of common vari-
able names. This is one of the disadvantages of using an optimized
CUDA code. When changes are made in the main codebase, it is dif-
ficult to mirror them in the CUDA code. It also took a very large effort
to get the CUDA kernels into forms like this for best performance,
and this level of effort for large sections of the code is not very fea-
sible. Therefore, we are looking to OpenACC as a more viable and
portable option going forward for porting to Titan’s GPUs.

Finally, the OpenACC code is given in Fig. 3. Many transforma-
tions to the CPU code were attempted, and the most impactful are
distilled here. There were five main modifications required to get
good performance out of the OpenACC code. First, the inner loops
could not loop over so small an index of just npxnp. Rather, since
on the GPU the inner loops will form threads run within an SM, it
was found that looping over npxnpxnlev gave enough threads for
good performance. Thus, the loops and temporary variables were
transformed to loop over np xnpxnlev. Next, there were variables
such as dinv, vstar, and gv, which did not have npxnpxnlev
as the fastest varying array indices. Since these are the indices
used for threading on the GPU, this would lead to poor DRAM
coalescing over the bus. Therefore, these variables were trans-
formed. Third, the last two loops of the CPU code were transformed
to remove the synchronization between them. There were two
reasons this improved OpenACC performance. First, the variables
dp_star and vvtemp are not placed in shared memory by OpenACC.
Thus, removing these temporary arrays removes communication
to and from DRAM for a big improvement. Also, as implemented,
there’s an implied __syncthreads () call between each successive
trip through the inner loops, and the removal of this improved per-
formance. Fourth, some temporary variables were added for the
first loop to explicitly reduce the frequency of access to arrays
located in DRAM. This improved performance for the PGI OpenACC

M. Norman et al. / Journal of Computational Science 9 (2015) 1-6 3

1 do ie = nets , nete

2 do qg = 1 , gsize

3 do k =1 , nlev

4 do j =1, np

5 do i =1, np

6 gv(i,j,1) = elem(ie)¥metdet(i,j) * &

7 (elem(ie)%Dinv(1,1,i,j)*Vstar(i,j,1,k,ie) + &
8 elem(ie)%Dinv(1,2,i,j)*Vstar(i,j,2,k,ie)) * &
9 elem(ie)%state%Qdp(i,j,k,q,n0_qdp)

10 gv(i,j,2) = elem(ie)’metdet(i,j) * &

11 (elem(ie)%Dinv(2,1,i,j)*Vstar(i,j,1,k,ie) + &
12 elem(ie)%Dinv(2,2,i,j)*Vstar(i,j,2,k,ie)) * &
13 elem(ie)%state’%Qdp(i,j,k,q,n0_qdp)

14 enddo

15 enddo

16 do j =1, np

17 do 1 =1, np

18 dudx00 = 0.0d0

19 dvdy00 = 0.0d0

20 do i =1, np

21 dudx00 = dudx00 + derivy%Dvv(i,1l)*gv(i,j,1)

22 dvdy00 = dvdy00 + derivDvv(i,l)*gv(j,i,2)

23 enddo

24 dp_star(1,j) = dudx00

25 vvtemp (j,1) = dvdy00

26 enddo

27 enddo

28 do j =1, np

29 do i =1, np

30 dp_star(i,j) = (dp_star(i,j) + vvtemp(i,j)) * (elem(ie)%rmetdet(i,j)*rrearth)
31 enddo

32 enddo

33 elem(ie)%state’Qdp(:,:,k,q,npl_qdp) = elem(ie)’%spheremp(:,:) * &
34 (elem(ie)%state%Qdp(:,:,k,q,n0_qdp) - &
35 dt * dp_star(:,:))

36 enddo

37 enddo

38 enddo

Fig. 1. Original CPU kernel code. The variables gv, metdet, dinv, vstar, qgdp, dudx00, dvdy00, Dvv, dp_star, vvtemp, spheremp, rmetdet, dt,andrrearth
are all double precision floats, whose dimensions can be inferred by the indexing except for gdp, which has the dimensions (np, np,nlev, gsize, 2, nelemd). nets and nete
are per-thread indices so that each thread operates independently on a different column of elements, and this is run in an OpenMP parallel region.

kernel, implying that it was not doing this by default. The fourth There are four separate codes tested in this study. They are
transformation did not appreciably affect Cray OpenACC kernel per- labeled “CPU”, “CUDA”, “OACC”, and “OACC2". The first three cor-
formance. Finally, the OpenMP decomposition was removed, and respond to Figs. 1-3. The OACC2 code is the same as OACC except

the master thread launched the OpenACC kernels. with two changes. First, the derived types are all replaced with
1 real(kind=real_kind), shared :: gv_s (np*np+1,numk_eul ,2)
2 real(kind=real_kind), shared :: deriv_dvv_s(np*np+1)
3
4 ks = int(ceiling(dble(nlev)/numk_eul))
5 i = modulo(threadidx¥%x-1 ,np)+1
6 j = modulo((threadidx’%x-1)/np,np)+1
7 kk = (threadidx¥%x-1)/(np*np)+1
8 k = modulo(blockidx%x-1,ks)*numk_eul + kk
9 q = modulo((blockidx%x-1)/ks,qgsize_d)+1
10 ie = ((blockidx%x-1)/ks)/qsize_d+1
11 ij = (j-1)*np+i
12
13 if (k > nlev .or. q > gsize_d .or. ie > nete) return
14
15 if (kk == 1) deriv_dvv_s(ij) = deriv_dvv(i,j)
16 qtmp = Qdp (i,j,k,q,n0_qdp,ie)

17 vsltmp = vstar(i,j,k,1,ie) * metdet(i,j,ie) * qtmp

18 vs2tmp = vstar(i,j,k,2,ie) * metdet(i,j,ie) * qtmp

19 gv_s(ij,kk,1) = dinv(i,j,1,1,ie) * vsitmp + dinv(i,j,1,2,ie) * vs2tmp
20 gv_s(ij,kk,2) = dinv(i,j,2,1,ie) * vsltmp + dinv(i,j,2,2,ie) * vs2tmp
21 divtemp = 0.0dO0

22 vvtemp = 0.0d0

23 call syncthreads()

24 do s =1, np

25 divtemp = divtemp + deriv_dvv_s ((i-1)*np+s) * gv_s((j-1)*np+s,kk,1)
26 vvtemp = vvtemp + deriv_dvv_s((j-1)*np+s) * gv_s((s-1)*np+i,kk,2)

27 enddo
28 Qdp(i,j,k,q,npl_qdp,ie) = spheremp(i,j,ie) * (qtmp - dt * (divtemp + vvtemp) * &
29 (rmetdet(i,j,ie) * rrearth_d))

Fig. 2. CUDA kernel code. numk. eul=6. It is launched with np x np x numk_ eul threads per block and [nlev/numk_ eul] * gsize * nelemd blocks.

4 M. Norman et al. / Journal of Computational Science 9 (2015) 1-6

1 !$acc parallel loop gang collapse(2) private(gv, dudz00, dvdy00,dp_star ,&

2 !$%acc® vutemp, qtmp,vsitmp,vs2tmp) wvector_length (128) async (1)

3 do ie = 1 , nelemd

4 do qg = 1 , gsize

5 !$acc loop wvector collapse (3)

6 do k =1 , nlev

7 do j =1, np

8 do i =1, np

9 qtmp = elem(ie)%state’%qdp(i,j,k,q,n0_qdp)

10 vsltmp = vstar(i,j,k,1,ie) * elem(ie)%metdet(i,j) * qtmp

11 vs2tmp = vstar(i,j,k,2,ie) * elem(ie)%metdet(i,j) * qtmp

12 gv(i,j,k,1) = (dinv(i,j,1,1,ie)*vsitmp + dinv(i,j,1,2,ie)*vs2tmp)
13 gv(i,j,k,2) = (dinv(i,j,2,1,ie)*vsitmp + dinv(i,j,2,2,ie)*vs2tmp)
14 enddo

15 enddo

16 enddo

17 !'$acc loop wvector collapse (3)

18 do k =1 , nlev

19 do j =1, np

20 do i =1 , np

21 dudx00 = 0.0d0

22 dvdy00 = 0.0d0

23 !$acc loop segq

24 do 1 =1, np

25 dudx00 = dudx00 + deriv%4Dvv(l,i)*gv(l,j,k,1)

26 dvdy00 = dvdy00 + deriv%Dvv(l,j)*gv(i,1l,k,2)

27 enddo

28 elem(ie)’%state%Qdp(i,j,k,q,npl_qdp) =

29 elem(ie)%spheremp(i,j) * (elem(ie)¥%state’Qdp(i,j,k,q,n0_qdp) - dt * &
30 (dudx00+dvdy00)*(elem(ie)rmetdet (i,j)*rrearth))
31 enddo

32 enddo

33 enddo

34 enddo

35 enddo

Fig. 3. OpenACC kernel code.

single arrays in a similar method as used in the CUDA code. This
was done because the PGI compiler gives “invalid address” errors
during runtime whenever any derived types were used inside the
kernel. Second, the PGI compiler still gave “invalid address” errors
even when all derived types were removed. This was eventually
tracked to the variable, gv. As a gang-private variable, the compiler
was handling the variable wrongly. When gv was removed from the
private variable list by appending gsizexnelemdindices to the end
of the array, this error went away for the PGI compiler, and it was
finally giving the correct answer as well. This had no net effect on
the performance because gv wasn't being placed into GPU shared
memory by any of the compilers anyway, even though it was more
than small enough to fit. The Cray compiler worked immediately
for all cases without trouble.

The CPU code was compiled by PGI with the flags “-mp
-03-fastsse -tp=bulldozer” and by Cray with all defaults
and no additional flags. The PGl CUDA FORTRAN code was
compiled with “~ta=nvidia, cc35-Mcuda=5.5,cc35 -mp -03 -
tp=bulldozer”. The Cray OpenACC code was compiled with
“-0 3 -h vector3,scalar3, fp4”, and the PGI OpenACC code
was compiled with “-mp -acc -ta=nvidia,cuda5.5,cc35-03
—-tp=bulldozer”. The PGI version was 14.10.0 for all codes. For
the OpenACC codes, the Cray version 8.3.4 compiler was used. For
the CPU code, the Cray version 8.2.5 compiler was used. The rea-
son is that 8.3.4 was faster for the OpenACC code, but the 8.3.4
compiler produced an executable that was over 50% slower for the
CPU code than version 8.2.5. Thus, for a competitive comparison
between CPU and GPU codes, Cray 8.2.5 was the fastest and thus
serves as the baseline. All codes gave the same output for gdp to a
relative absolute difference of 1021 or smaller.

3. Results

There are six different runs in all: (1) CPU code run with PGI,
(2) CPU code run with Cray 8.2.5, (3) CUDA code run with PGI, (4)

OACC code run with Cray 8.3.4, (5) OACC2 code run with Cray 8.3.4,
and (6) OACC2 code run with PGI. Two different methods of tim-
ing were used. The first, which is used for all of the runs is the
omp_get_wtime () call, which is wrapped around 1000 invocations
of the kernel. After waiting for completion, a second call is run,
and the resulting walltime is divided by 1000 to obtain the average
time per kernel call. What this does for GPU kernels is effectively
removes kernel invocation overheads in the walltime estimation.
The second method of timing is the use of the CUDA profiler, which
uses CUDA events for accurate timing. In most cases, the two gave
nearly identical numbers when run on the GPU. The timings and
other performance related data are given in Table 1. The PGI com-
piler performed nearly 2x slower than the Cray compiler for the
CPU code. The CUDA-PGI kernel gained a 2.75x speed-up over CPU-
Cray, the highest among the GPU runs. In terms of kernel time, the
OACC2-PGI code performed the best among of all the OpenACC ker-
nels, just slightly faster than OACC2-Cray. However, the walltime
reported by omp_get _wtime () for OACC2-PGl is significantly worse
than the kernel time, indicating there may be extra overheads in
the asynchronous kernel calls than exist for the other compilers. It
was confirmed in profiling that the kernels ran in succession with-
out intermittent data transfers, so the source of the overhead is
unknown.

The reason the OACC2 kernels performed faster than the
OACC kernel is because the OACC kernel is performing additional
addressing lookups for the derived types, as evidenced by the total
DRAM load requests during kernel execution. Removing these addi-
tional lookups gives an additional 1.13x speedup, but it comes at
a high cost in terms of development. Removing derived types is
a very invasive and intensive change for a codebase like CAM-SE.
Thus, it is likely not worth the effort. The OpenACC kernels have a
grid size that is 5 times less than the CUDA kernel. The CUDA ker-
nel explicitly handles six vertical levels per CUDA block (specified
by numk_eul) leaving nlev/6 =5 chunks of levels to be placed into
the CUDA grid. The difference in grid size between OpenACC and

M. Norman et al. / Journal of Computational Science 9 (2015) 1-6 5

Table 1
Runtimes and some other performance related data for the CPU and GPU kernels.
CPU-PGI CPU-Cray CUDA-PGI OACC-Cray OACC2-Cray OACC2-PGI

omp-get_-wtime (s) 830 446 165 257 230 382
kernel time (js) - - 162 252 224 218
Kernel speedup vs CPU-Cray - - 2.75x 1.77x 1.99x 2.05x%
wtime speedup vs CPU-Cray 0.537x - 2.70x 1.74x 1.94x 1.68x
CUDA grid size - - 8000 1600 1600 1600
CUDA block size - - 96 128 128 128
Registers per thread - - 34 49 51 52
Occupancy - - 0.750 0.562 0.562 0.562
Total Shared Memory - - 1768 B 0B 0B 0B
DRAM Load Requests - - 3420 22,230 17,100 17,100

CUDA kernels shows that the OpenACC kernels are all looping over
nlev/8=3.75 chunks of levels within the kernel rather than placing
them into the grid. The CUDA kernel also has significantly fewer
DRAM load requests than the OpenACC kernels, and this is most
likely due to the use of temporary variables and shared memory.
None of the OpenACC kernels in any of the tested implementations
(including beyond what is shown explicitly in this study) used stat-
ically or dynamically allocated shared memory at any point. This is
likely the greatest flaw and difficulty with current OpenACC com-
piler implementations when comparing with CUDA kernels. Still,
given that the OpenACC kernels do not use shared memory, the
fact that they get within 35% of the performance of our CUDA ker-
nel is very impressive. The register usage is likely one potential
explanation for how this was achieved.

4. Conclusions

In this study, a kernel has been ported to GPUs using OpenACC
for comparison against a previous CUDA implementation. The PGI
and Cray compilers were used for the OpenACC implementation,
and the nuances of the implementations and runs have been speci-
fied. In all, the CUDA kernel was surprisingly only 1.35x faster than
the best OpenACC implementation. However, that implementation
involves transforming data in a manner that is difficult to do for the
entire codebase and should be avoided if possible. For the OACC ker-
nel, the one using derived types as exist in the current codebase,
the CUDA kernel was 1.56x faster than the OpenACC implemen-
tation. Though it did give the fastest overall OpenACC kernel, the
PGI compiler was unable to manage derived types and experienced
additional difficulties, such as additional “illegal address” errors as
well as odd overheads in the asynchronous invocation of OpenACC
kernels, which significantly degraded performance in terms of raw
walltime. For this kernel in particular, the Cray compiler is the only
one mature enough to use in practice at this point.

Both compilers have a way to go before we believe they could
be considered useful in the real world for significant portions of the
CAM-SE codebase, though the Cray compiler is currently closer to a
usable state. Two things are currently high priority: (1) the ability
to transfer parts of derived types and (2) the ability to get a stream
handle from OpenACC for interoperability with CUDA if great opti-
mization is desired. One thing OpenACC simply has not achieved at
this point is portability (at least for this code). Therefore, it appears
that the implementation of OpenACC has a way to go before the
ideals driving the standard are realized. Also, many of the looping
structures were done in such a way as to explicitly benefit a GPU.
It is not clear that this type of looping would perform well on, for
instance, a MIC device. Also, the transformations performed in the
OpenACC code would degrade cache efficiency on the CPU as well.
Thus, it is highly unlikely that a literal single source code would
suffice for performance portability. Still, the level of branching /
divergence in the code is greatly aided by OpenACC, and data and

loop restructuring to expose threading is a single effort that benefits
all architectures.

However, the biggest virtue of OpenACC experienced here is the
significant ease of porting to a GPU, and this is no small virtue.
OpenACC is still a rapidly evolving technology, probably more
implementation-wise than standard-wise. But the standard is, in
fact, evolving in important ways as well. This study demonstrates
the need to continue this evolution and advancement so that more
applications can more easily and portably realize the benefits of
GPUs and MICs to advance the capabilities of scientific simulation
on capability-scale hardware. Also, even with the shared memory
deficiencies, OpenACC did get somewhat close to CUDA perfor-
mance. This is encouraging and indicates that OpenACC will likely
be performant enough to use for production applications when the
implementations become more mature.

Acknowledgements

This research used resources of the National Center for Com-
putational Sciences at Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

References

[1] J.D. Annan, J.C. Hargreaves, Efficient estimation and ensemble generation in
climate modelling, Philos. Trans. R. Soc. A 365 (1857) (2007) 2077-2088.

[2] J. Bachmeister, R. Neale, A. Gettleman, C. Hannay, P.H. Lauritzen, J. Caron, J.E.
Truesdale, M. Wehner, Exploratory high-resolution climate simulations using
the community atmosphere model (CAM), 2014, pp. 3073-3099.

[3] J. Berckmans, T. Woollings, M.-E. Demory, P.-L. Vidale, M. Roberts, Atmospheric
blocking in a high resolution climate model: influences of mean state, orogra-
phy and eddy forcing, Atmos. Sci. Lett. 14 (2013) 34-40.

[4] I Carpenter, R. Archibald, KJ. Evans,]. Larkin, P. Micikevicius, M. Norman, J.
Rosinski, J. Schwarzmeier, M.A. Taylor, Progress towards accelerating HOMME
on hybrid multi-core systems, Int.]. High Perform. Comput. Appl. (2012), http://
dx.doi.org/10.1177/1094342012462751

[5] T. Delworth, A. Rosati, W. Anderson, A.J. Adcroft, V. Balaji, R. Benson, K. Dixon,
S.M. Griffies, H.-C. Lee, R.C. Pacanowski, G.A. Vecchi, A.T. Wittenberg, F. Zeng, R.
Zhang, Simulated climate and climate change in the GFDL2.5 high-resolution
coupled climate model, J. Climate 25 (2012) 2755-2781.

[6] J.M. Dennis, J. Edwards, K.J. Evans, O. Guba, P.H. Lauritzen, A.A. Mirin, A. St-Cyr,
M.A. Taylor, P.H. Worley, CAM-SE: a scalable spectral element dynamical core
for the community atmosphere model, Int. J. High Perform. Comput. Appl. 26
(1)(2012) 74-89.

[7] T. Jung, M.J. Miller, T.N. Palmer, P. Towers, N. Wedi, D. Achuthavarier, J.M.
Adams, E.L. Altshuler, B.A. Cash, J.L. Kinter III, L. Marx, C. Stan, K.I. Hodges, High-
resolution global climate simulations with the ECMWF model in project athena:
experimental design, model climate, and seasonal forecast skill, J. Climate 25
(2012) 3155-3172.

[8] M. Khairoutdinov, D. Randall, C. DeMott, Simulations of the atmospheric gen-
eral circulation using a cloud-resolving model as a superparameterization of
physical processes,]. Atmos. Sci. 62 (2006) 2136-2154.

[9] P.H Lauritzen, C. Jablonowski, M. Taylor, R. Nair, Numerical Techniques for
Global Atmospheric Models, Springer, 2011.

[10] J. Larkin, R. Archibald, I. Carpenter, V. Anantharaj, P. Micikevicius, K.M. Evans
Norman, Porting the Community Atmosphere Model - Spectral Element Code
to Utilize GPU Accelerators, Cray User Group, 2012.

http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0005
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0010
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0015
dx.doi.org/10.1177/1094342012462751
dx.doi.org/10.1177/1094342012462751
dx.doi.org/10.1177/1094342012462751
dx.doi.org/10.1177/1094342012462751
dx.doi.org/10.1177/1094342012462751
dx.doi.org/10.1177/1094342012462751
dx.doi.org/10.1177/1094342012462751
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0025
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0030
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0035
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0040
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0045
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0050

6 M. Norman et al. / Journal of Computational Science 9 (2015) 1-6

[11] V. Rao, R. Archibald, KJ. Evans, Emulation to simulate low-resolution atmo- [13] E. Roeckner, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E.
spheric data, Int. J. Comput. Math. 91 (4) (2014) 770-780. Mangzini, U. Schlese, U. Schulzweida, Efficient estimation and ensemble gener-
[12] J.H. Richter, A. Solomon,].T. Bacmeister, Effects of vertical resolution and ation in climate modelling, J. Climate 19 (2006) 3771-3791.
nonorographic gravity wave drag on the simulated climate in the com- [14] M.A. Taylor,]. Edwards, S. Thomas, R. Nair, A mass and energy conserving spec-
munity atmosphere model, version 5,]J. Adv. Model. Earth Syst. 6 (2014) tral element atmospheric dynamical core on the cubed-sphere grid, J. Phys.

357-383. Conf. Series 78 (2007) 012074.

http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0055
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0060
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0065
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070
http://refhub.elsevier.com/S1877-7503(15)00060-5/sbref0070

	A case study of CUDA FORTRAN and OpenACC for an atmospheric climate kernel
	1 Introduction
	2 Code and compiler discussion
	3 Results
	4 Conclusions
	Acknowledgements
	References

