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The  porting  of  a key  kernel  in  the  tracer  advection  routines  of  the Community  Atmosphere  Model  –
Spectral  Element  (CAM-SE)  to use Graphics  Processing  Units  (GPUs)  using  OpenACC  is  considered  in
comparison  to an  existing  CUDA  FORTRAN  port.  The  development  of  the  OpenACC  kernel  for  GPUs  was
substantially  simpler  than  that  of the CUDA  port.  Also,  OpenACC  performance  was  about  1.5×  slower  than
the  optimized  CUDA  version.  Particular  focus  is given  to  compiler  maturity  regarding  OpenACC  imple-
mentation  for modern  FORTRAN,  and  it is found  that  the  Cray  implementation  is  currently  more  mature
PU
PC

than  the  PGI  implementation.  Still, for  the  case  that  ran  successfully  on PGI,  the  PGI  OpenACC  runtime
was  slightly  faster  than  Cray.  The  results  show  encouraging  performance  for OpenACC  implementation
compared  to CUDA  while  also  exposing  some  issues  that  may  be necessary  before  the  implementations
are suitable  for porting  all  of CAM-SE.  Most notable  are that  GPU  shared  memory  should  be used  by  future
OpenACC  implementations  and  that  derived  type  support  should  be  expanded.

© 2015  Published  by  Elsevier  B.V.
. Introduction

This study considers the viability of using the OpenACC standard
s currently implemented in particular by the Cray and PGI com-
ilers from a best/easiest case perspective of an easily ported and
ighly performant kernel in the atmospheric climate model CAM-
E (Community Atmosphere Model – Spectral Element) [6,14,9],

 part of the ACME (Accelerated Climate Model for Energy) cou-
led climate model code. CAM-SE is a capability-scale, IPCC-class
tmospheric climate model intended to simulate climate projec-
ions over large time scales. Based on the Spectral Element (SE)

ethod implemented on cubed-sphere topology, it is a highly
calable code with minimal data communication across domain
ecomposition boundaries. Run on a 14 km mesh, the code scales
uccessfully out to 14 K nodes on the Titan supercomputer at
ak Ridge National Laboratory. Given the acquisition of Graph-

cs Processing Units (GPUs) on each node of Titan, the tracer

dvection routines of CAM-SE were ported to GPUs using CUDA
ORTRAN with good success [4,10]. This study begins the process of
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J. Larkin), avose@cray.com (A. Vose), evanskj@ornl.gov (K. Evans).
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877-7503/© 2015 Published by Elsevier B.V.
considering the use of OpenACC in porting more of CAM-SE’s run-
time profile to GPUs.

This is an important avenue to investigate because climate simu-
lation is always in need of better efficiency and greater computing
power. There has been a strong push to develop Global coupled
Climate Models (GCMs), particularly the atmospheric components,
with unprecedented horizontal resolution. Doing so has enabled
high-resolution simulations that capture and characterize the fre-
quency of tropical cyclones [2], improve the frequency of blocking
flow events [3], and improve tropical precipitation and circula-
tion [5,7]. These early results invite additional questions about
the interaction between small- and large-scale atmospheric fea-
tures on long-term, global scales. Some recent so-called “hero runs”
(performed at very high resolution) focused on capturing new
global-scale atmospheric behavior, and yet there are still plenty of
interesting climate questions to answer regarding smaller scales,
where extreme events involving precipitation and air quality, for
instance, occur.

Improving multi-scale interactions is a primary scientific focus
for next generation GCMs. We  need to explore model sensitivity
at high resolution to better understand regional and global climate

variability. Also, multi-ensemble runs (either straightforwardly or
via a reduced parameter space exploration [1,11]) help validate
and characterize high resolution model results. Ensemble runs
introduce additional parallelism since each run can be performed
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ndependently, and this could significantly reduce MPI  overheads,
etter utilize charged core-hours, and increase total utilization of
he target platform. More computing also enables so-called “super-
arameterization” schemes for greatly improved physical fidelity

n resolving the climatic influence of clouds [8]. Being on sepa-
ate grids, these models could also be run in parallel with the
ain climate model for improved performance. Also, increasing

he number of vertical levels would be enabled by more comput-
ng power. Strong vertical sensitivities have led to hesitation in
ncreasing vertical levels while refining in the horizontal, and this
as resulted in an inconsistency between the dimensions. Several
tudies have shown benefits in the mean climate with increased
ertical resolution [13,12].

Before considering all aspects of OpenACC porting, it needs to
e studied and documented whether OpenACC implementations in
urrent compilers are capable of competing with CUDA implemen-
ations. The benefits of OpenACC include better portability between
ompilers and devices as well as greater ease in porting. The ease in
orting is due to many factors. First, the management of host and
evice memories, including allocations, deallocations, and PCI-e
ata movement between the two, can be managed more seamlessly
ia directives. Also, low-level, device-specific considerations such
s shared memory usage and banking conflicts are removed in Ope-
ACC and placed in the compiler’s responsibility for management
ather than the user’s. Many inconveniences such as partitioning
ork across GPU grids and blocks are made simpler as well during

ernel launches. When mature, OpenACC shows promise for greatly
asing the porting effort as well as increasing the available compil-
rs to choose from. Given that CUDA FORTRAN is implemented only
y PGI, OpenACC slightly improves portability since it is currently

mplemented by PGI as well as Cray compilers, with more compilers
romised in 2015.

However, the standard is not mature in compiler implemen-
ation at this point. For instance, both Cray and PGI have certain
ifficulties with transferring parts of FORTRAN derived types over
CI-e using directives. The Cray compiler, through “deep copy” sup-
ort, is more adept at correctly managing derived types onboard
he GPU, but it still has significant flaws in the implementation.
or instance, one cannot currently pass only part of a derived type
ith either PGI or Cray implementations. The attempt at doing such

ypically results in the transfer of the entire derived type rather
han just the subset one wishes to transfer, even if that subset is a
ontiguous block of memory whose bounds are known at compile
ime. These issues should be resolved in coming implementations,
ut they mark key issues for OpenACC to resolve for many modern
ORTRAN codebases. Note that this is not necessarily an OpenACC
tandard issue, as the standard itself does not currently address
he nuances of partial derived type transfers, the syntax involved,
r the expected behavior from an implementation. CUDA Unified
emory may  simplify the handling of complex data structures by

llowing them to be available both on the host and device, greatly
implifying these data structures for both the compiler and the user.
dditionally, the OpenACC technical committee is in the process
f designing directives for better handling of complex data struc-
ures in a future version of the specification. At the time of writing,
owever, neither are readily available.

The purpose of this paper, though, is to look past many of
he unresolved issues for a full OpenACC port and to ask a more
ounded and pointed question. How does OpenACC compare
gainst an existing CUDA FORTRAN implementation for a key ker-
el in CAM-SE’s tracer transport routines in terms of runtime and

n terms of ease of porting? Granted, neither the OpenACC nor

he CUDA implementations may  be entirely optimal, but they are
oth attempts at porting from an experienced user of CUDA and
penACC with the help of vendor advice and support. Success-

ul handling of this kernel is a necessary but not sufficient step
tational Science 9 (2015) 1–6

in the path to a full port. It is something worth investigating in
depth.

2. Code and compiler discussion

The machine used in this study is Oak Ridge Leadership Com-
puting Facility’s Titan supercomputer, which has a 16-core AMD
interlagos processor and a Kepler K20× GPU on each node. CAM-SE
is a FORTRAN 90 codebase implemented with several mechanisms
of OpenMP parallelism (coarse grained or fine grained threading)
and MPI  domain decomposition. Each MPI  task operates on nelemd
columns of elements, and in the most widely used OpenMP imple-
mentation, the columns are chunked into parts, and each thread
operates on a separate chunk within an “omp parallel” clause.
Each column consists of nlev vertical levels, and each vertical level
contains np×np basis function coefficients to be updated. There are
qsize independent tracers to solve for. The kernel chosen for this
study is the beginning part of a routine called euler step, which
performs the variational SE advection operator. The dimension
sizes are np=4, nlev=30, qsize=50, and nelemd=32. 32 columns
of elements per node represents the usual scaling limit for CAM-SE
when run in production mode at scale – the point at which MPI
waiting begins to dominate the runtime profile. In all, for this ker-
nel, there are np×np×nlev×qsize×nelemd=768,000 independent
indices over. The CPU version of the kernel uses the coarse-grained
OpenMP implementation, which achieves an 11.5× speed-up on
Titan’s AMD  Interlagos processors using 16 cores versus 1 core. So
the CPU code is a competitive comparison point when comparing
against the Kepler GPU performance.

The CPU code is given in Fig. 1. A CUDA kernel taken from the
existing implementation in the ACME codebase is also given in
Fig. 2. The derived types have been changed into single arrays by
placing nelemd as the last index. Note that the optimized CUDA
code is hardly recognizable, and only then because of common vari-
able names. This is one of the disadvantages of using an optimized
CUDA code. When changes are made in the main codebase, it is dif-
ficult to mirror them in the CUDA code. It also took a very large effort
to get the CUDA kernels into forms like this for best performance,
and this level of effort for large sections of the code is not very fea-
sible. Therefore, we  are looking to OpenACC as a more viable and
portable option going forward for porting to Titan’s GPUs.

Finally, the OpenACC code is given in Fig. 3. Many transforma-
tions to the CPU code were attempted, and the most impactful are
distilled here. There were five main modifications required to get
good performance out of the OpenACC code. First, the inner loops
could not loop over so small an index of just np×np.  Rather, since
on the GPU the inner loops will form threads run within an SM,  it
was found that looping over np×np×nlev gave enough threads for
good performance. Thus, the loops and temporary variables were
transformed to loop over np×np×nlev.  Next, there were variables
such as dinv, vstar,  and gv,  which did not have np×np×nlev
as the fastest varying array indices. Since these are the indices
used for threading on the GPU, this would lead to poor DRAM
coalescing over the bus. Therefore, these variables were trans-
formed. Third, the last two  loops of the CPU code were transformed
to remove the synchronization between them. There were two
reasons this improved OpenACC performance. First, the variables
dp star and vvtemp are not placed in shared memory by OpenACC.
Thus, removing these temporary arrays removes communication
to and from DRAM for a big improvement. Also, as implemented,
there’s an implied syncthreads() call between each successive

trip through the inner loops, and the removal of this improved per-
formance. Fourth, some temporary variables were added for the
first loop to explicitly reduce the frequency of access to arrays
located in DRAM. This improved performance for the PGI OpenACC
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1 do ie = net s , net e
2 do q = 1 , qsize
3 do k = 1 , nle v
4 do j = 1 , np
5 do i = 1 , np
6 gv(i,j,1 ) = ele m (ie )% metde t (i,j) * &
7 ( ele m (ie )%Din v (1 ,1 ,i,j)* Vstar (i,j ,1 ,k, ie) + &
8 ele m (ie )%Din v (1 ,2 ,i,j)* Vstar (i,j ,2 ,k, ie) ) * &
9 ele m (ie )% state % Qdp (i,j,k,q,n0_qd p )
10 gv(i,j,2) = elem(ie)% metdet(i,j) * &
11 ( elem(ie)%Dinv(2,1,i,j)*Vstar(i,j,1,k,ie) + &
12 elem (ie )%Din v (2 ,2 ,i,j)* Vstar (i,j ,2 ,k, ie) ) * &
13 elem (ie )% state % Qdp (i,j,k,q,n0_qd p )
14 enddo
15 enddo
16 do j = 1 , np
17 do l = 1 , np
18 dudx00 = 0. 0 d0
19 dvdy00 = 0. 0 d0
20 do i = 1 , np
21 dudx00 = dudx00 + deriv % Dvv (i,l)* gv(i,j,1 )
22 dvdy00 = dvdy00 + deriv % Dvv (i,l)* gv(j,i,2 )
23 enddo
24 dp_star (l,j) = dudx0 0
25 vvtemp (j,l) = dvdy0 0
26 end do
27 enddo
28 do j = 1 , np
29 do i = 1 , np
30 dp_star (i,j) = ( dp_sta r (i,j ) + vvtem p (i,j) ) * ( ele m (ie )% rmetde t (i,j)* rreart h )
31 end do
32 enddo
33 elem (ie )% state % Qdp (: ,: ,k,q,np1_qd p ) = ele m (ie )% spher emp (:,: ) * &
34 ( ele m (ie )% state % Qdp (: ,: ,k,q,n0_qd p ) - &
35 dt * dp_s tar (:,: ) )
36 enddo
37 enddo
38 enddo

F dudx

a cept f
a lumn 

k
t
f
t

ig. 1. Original CPU kernel code. The variables gv, metdet, dinv, vstar, qdp, 

re  all double precision floats, whose dimensions can be inferred by the indexing ex
re  per-thread indices so that each thread operates independently on a different co
ernel, implying that it was not doing this by default. The fourth
ransformation did not appreciably affect Cray OpenACC kernel per-
ormance. Finally, the OpenMP decomposition was  removed, and
he master thread launched the OpenACC kernels.

1 real(kin d = rea l_kin d ), share d :: gv_ s 
2 real(kin d = rea l_kin d ), share d :: der iv_ dvv_
3

4 ks = int(ceiling(dble(nlev)/ numk_eul ))
5 i = modul o ( th readi dx %x -1 ,np )+1
6 j = modul o (( thre adidx %x-1) / np ,np )+1
7 kk = ( thr eadidx %x -1)/( np* np)+ 1
8 k = modul o ( bloc kidx %x -1 , ks )* nu mk_eu l + kk
9 q = modul o (( blocki dx %x-1) / ks ,qsize_ d )+1
10 ie = (( blocki dx %x-1) / ks )/ qsize_ d +1
11 ij = (j-1) * np+i
12

13 if ( k > nlev .or. q > qsize_d .or. ie > n
14

15 if (kk == 1) de riv _dvv_ s (ij) = de riv_d vv (i
16 qtmp = Qdp (i,j,k,q, n0_qd p ,ie)
17 vs1tmp = vstar (i,j,k ,1 , ie) * metde t (i,j, ie
18 vs2tmp = vstar (i,j,k ,2 , ie) * metde t (i,j, ie
19 gv_s (ij ,kk ,1) = din v (i,j ,1 ,1 , ie) * vs1tm p 
20 gv_s (ij ,kk ,2) = din v (i,j ,2 ,1 , ie) * vs1tm p 
21 divtemp = 0.0d0
22 vvtemp = 0.0d0
23 call sync thr ead s ()
24 do s = 1 , np
25 divtemp = divte mp + deriv_ dvv _s ((i-1) * np
26 vvtemp = vvtem p + deriv _dv v_s ((j-1) * np
27 enddo
28 Qdp (i,j,k,q, np1_q dp ,ie) = sphere mp (i,j, ie)
29 ( rmetde t (i,j, ie

Fig. 2. CUDA kernel code. numk eul = 6. It is launched with np × np × num
00, dvdy00, Dvv, dp star, vvtemp, spheremp, rmetdet, dt,  and rrearth

or qdp, which has the dimensions (np,np,nlev,qsize,2,nelemd). nets and nete

of elements, and this is run in an OpenMP parallel region.
There are four separate codes tested in this study. They are
labeled “CPU”, “CUDA”, “OACC”, and “OACC2”. The first three cor-
respond to Figs. 1–3. The OACC2 code is the same as OACC except
with two changes. First, the derived types are all replaced with

(np* np +1 ,numk_eu l ,2)
s (np* np +1 )

ete ) return

,j)

) * qtm p
) * qtm p
+ din v (i,j ,1 ,2 , ie) * vs2tm p
+ din v (i,j ,2 ,2 , ie) * vs2tm p

+s) * gv_ s ((j -1) * np+s,kk ,1)
+s ) * gv_ s ((s-1) * np+i,kk ,2)

 * ( qtm p - dt * ( divtem p + vvtem p ) * &
) * rre arth_d ) )

k eul threads per block and �nlev/numk eul � * qsize * nelemd blocks.
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1 ! $acc parall el loo p gan g coll aps e (2 ) pri vate (gv , dudx00 , dvdy00 , dp_st ar ,&
2 !$acc& vvtemp ,qtmp ,vs1tmp ,vs2tmp) vector_length (128) async (1)
3 do ie = 1 , ne lem d
4 do q = 1 , qsize
5 ! $ac c lo op vect or coll aps e (3)
6 do k = 1 , nle v
7 do j = 1 , np
8 do i = 1 , np
9 qtm p = ele m (ie )% state % qdp (i,j,k,q,n0_qd p )
10 vs1tmp = vst ar (i,j,k ,1 , ie) * ele m (ie )% metde t (i,j) * qtm p
11 vs2tmp = vstar(i,j,k,2,ie) * elem(ie)% metdet(i,j) * qtmp
12 gv(i,j,k ,1) = ( din v (i,j ,1 ,1 , ie )* vs1tm p + din v (i,j ,1 ,2 , ie )* vs2tm p )
13 gv(i,j,k,2) = ( dinv(i,j,2,1,ie)* vs1tmp + dinv(i,j,2,2,ie)* vs2tmp )
14 enddo
15 enddo
16 enddo
17 ! $ac c loop vec tor colla pse (3)
18 do k = 1 , nle v
19 do j = 1 , np
20 do i = 1 , np
21 dudx00 = 0. 0 d0
22 dvdy00 = 0. 0 d0
23 ! $ac c loop se q
24 do l = 1 , np
25 dudx00 = dudx00 + deriv % Dvv (l,i)* gv(l,j,k ,1)
26 dvdy00 = dvdy00 + deriv%Dvv(l,j)*gv(i,l,k,2)
27 enddo
28 elem (ie )% state % Qdp (i,j,k,q,np1_qd p ) =
29 elem (ie )% spher emp (i,j) * ( ele m (ie )% state % Qdp (i,j,k,q,n0_qd p ) - dt * &
30 (dudx0 0 +dvdy0 0 )*( elem (ie )% rmetde t (i,j)* rreart h ) )
31 end do
32 enddo
33 enddo
34 enddo
35 enddo
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Fig. 3. Open

ingle arrays in a similar method as used in the CUDA code. This
as done because the PGI compiler gives “invalid address” errors
uring runtime whenever any derived types were used inside the
ernel. Second, the PGI compiler still gave “invalid address” errors
ven when all derived types were removed. This was eventually
racked to the variable, gv.  As a gang-private variable, the compiler
as handling the variable wrongly. When gv was removed from the
rivate variable list by appending qsize×nelemd indices to the end
f the array, this error went away for the PGI compiler, and it was
nally giving the correct answer as well. This had no net effect on
he performance because gv wasn’t being placed into GPU shared

emory by any of the compilers anyway, even though it was  more
han small enough to fit. The Cray compiler worked immediately
or all cases without trouble.

The CPU code was compiled by PGI with the flags “-mp
O3-fastsse -tp=bulldozer” and by Cray with all defaults
nd no additional flags. The PGI CUDA FORTRAN code was
ompiled with “-ta=nvidia,cc35-Mcuda=5.5,cc35 -mp -O3 -
p=bulldozer”. The Cray OpenACC code was compiled with
-O 3 -h vector3,scalar3,fp4”, and the PGI OpenACC code
as compiled with “-mp -acc -ta=nvidia,cuda5.5,cc35-O3

tp=bulldozer”. The PGI version was 14.10.0 for all codes. For
he OpenACC codes, the Cray version 8.3.4 compiler was used. For
he CPU code, the Cray version 8.2.5 compiler was  used. The rea-
on is that 8.3.4 was faster for the OpenACC code, but the 8.3.4
ompiler produced an executable that was over 50% slower for the
PU code than version 8.2.5. Thus, for a competitive comparison
etween CPU and GPU codes, Cray 8.2.5 was the fastest and thus
erves as the baseline. All codes gave the same output for qdp to a
elative absolute difference of 10−21 or smaller.
. Results

There are six different runs in all: (1) CPU code run with PGI,
2) CPU code run with Cray 8.2.5, (3) CUDA code run with PGI, (4)
ernel code.

OACC code run with Cray 8.3.4, (5) OACC2 code run with Cray 8.3.4,
and (6) OACC2 code run with PGI. Two different methods of tim-
ing were used. The first, which is used for all of the runs is the
omp get wtime() call, which is wrapped around 1000 invocations
of the kernel. After waiting for completion, a second call is run,
and the resulting walltime is divided by 1000 to obtain the average
time per kernel call. What this does for GPU kernels is effectively
removes kernel invocation overheads in the walltime estimation.
The second method of timing is the use of the CUDA profiler, which
uses CUDA events for accurate timing. In most cases, the two gave
nearly identical numbers when run on the GPU. The timings and
other performance related data are given in Table 1. The PGI  com-
piler performed nearly 2× slower than the Cray compiler for the
CPU code. The CUDA-PGI kernel gained a 2.75× speed-up over CPU-
Cray, the highest among the GPU runs. In terms of kernel time, the
OACC2-PGI code performed the best among of all the OpenACC ker-
nels, just slightly faster than OACC2-Cray. However, the walltime
reported by omp get wtime() for OACC2-PGI is significantly worse
than the kernel time, indicating there may  be extra overheads in
the asynchronous kernel calls than exist for the other compilers. It
was confirmed in profiling that the kernels ran in succession with-
out intermittent data transfers, so the source of the overhead is
unknown.

The reason the OACC2 kernels performed faster than the
OACC kernel is because the OACC kernel is performing additional
addressing lookups for the derived types, as evidenced by the total
DRAM load requests during kernel execution. Removing these addi-
tional lookups gives an additional 1.13× speedup, but it comes at
a high cost in terms of development. Removing derived types is
a very invasive and intensive change for a codebase like CAM-SE.
Thus, it is likely not worth the effort. The OpenACC kernels have a

grid size that is 5 times less than the CUDA kernel. The CUDA ker-
nel explicitly handles six vertical levels per CUDA block (specified
by numk eul) leaving nlev/6 =5 chunks of levels to be placed into
the CUDA grid. The difference in grid size between OpenACC and
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Table  1
Runtimes and some other performance related data for the CPU and GPU kernels.

CPU-PGI CPU-Cray CUDA-PGI OACC-Cray OACC2-Cray OACC2-PGI

omp  get wtime  (�s) 830 446 165 257 230 382
kernel time (�s) – – 162 252 224 218
Kernel speedup vs CPU-Cray – – 2.75× 1.77× 1.99× 2.05×
wtime  speedup vs CPU-Cray 0.537× – 2.70× 1.74× 1.94× 1.68×
CUDA grid size – – 8000 1600 1600 1600
CUDA block size – – 96 128 128 128
Registers per thread – – 34 49 51 52
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(2012) 3155–3172.
[8] M.  Khairoutdinov, D. Randall, C. DeMott, Simulations of the atmospheric gen-

eral circulation using a cloud-resolving model as a superparameterization of
physical processes, J. Atmos. Sci. 62 (2006) 2136–2154.
Occupancy – – 

Total  Shared Memory – – 

DRAM  Load Requests – – 

UDA kernels shows that the OpenACC kernels are all looping over
lev/8 =3.75 chunks of levels within the kernel rather than placing
hem into the grid. The CUDA kernel also has significantly fewer
RAM load requests than the OpenACC kernels, and this is most

ikely due to the use of temporary variables and shared memory.
one of the OpenACC kernels in any of the tested implementations

including beyond what is shown explicitly in this study) used stat-
cally or dynamically allocated shared memory at any point. This is
ikely the greatest flaw and difficulty with current OpenACC com-
iler implementations when comparing with CUDA kernels. Still,
iven that the OpenACC kernels do not use shared memory, the
act that they get within 35% of the performance of our CUDA ker-
el is very impressive. The register usage is likely one potential
xplanation for how this was achieved.

. Conclusions

In this study, a kernel has been ported to GPUs using OpenACC
or comparison against a previous CUDA implementation. The PGI
nd Cray compilers were used for the OpenACC implementation,
nd the nuances of the implementations and runs have been speci-
ed. In all, the CUDA kernel was surprisingly only 1.35× faster than
he best OpenACC implementation. However, that implementation
nvolves transforming data in a manner that is difficult to do for the
ntire codebase and should be avoided if possible. For the OACC ker-
el, the one using derived types as exist in the current codebase,
he CUDA kernel was 1.56× faster than the OpenACC implemen-
ation. Though it did give the fastest overall OpenACC kernel, the
GI compiler was unable to manage derived types and experienced
dditional difficulties, such as additional “illegal address” errors as
ell as odd overheads in the asynchronous invocation of OpenACC

ernels, which significantly degraded performance in terms of raw
alltime. For this kernel in particular, the Cray compiler is the only

ne mature enough to use in practice at this point.
Both compilers have a way to go before we believe they could

e considered useful in the real world for significant portions of the
AM-SE codebase, though the Cray compiler is currently closer to a
sable state. Two things are currently high priority: (1) the ability
o transfer parts of derived types and (2) the ability to get a stream
andle from OpenACC for interoperability with CUDA if great opti-
ization is desired. One thing OpenACC simply has not achieved at

his point is portability (at least for this code). Therefore, it appears
hat the implementation of OpenACC has a way to go before the
deals driving the standard are realized. Also, many of the looping
tructures were done in such a way as to explicitly benefit a GPU.
t is not clear that this type of looping would perform well on, for
nstance, a MIC  device. Also, the transformations performed in the

penACC code would degrade cache efficiency on the CPU as well.
hus, it is highly unlikely that a literal single source code would
uffice for performance portability. Still, the level of branching /
ivergence in the code is greatly aided by OpenACC, and data and

[

50 0.562 0.562 0.562
68 B 0 B 0 B 0 B
20 22,230 17,100 17,100

loop restructuring to expose threading is a single effort that benefits
all architectures.

However, the biggest virtue of OpenACC experienced here is the
significant ease of porting to a GPU, and this is no small virtue.
OpenACC is still a rapidly evolving technology, probably more
implementation-wise than standard-wise. But the standard is, in
fact, evolving in important ways as well. This study demonstrates
the need to continue this evolution and advancement so that more
applications can more easily and portably realize the benefits of
GPUs and MICs to advance the capabilities of scientific simulation
on capability-scale hardware. Also, even with the shared memory
deficiencies, OpenACC did get somewhat close to CUDA perfor-
mance. This is encouraging and indicates that OpenACC will likely
be performant enough to use for production applications when the
implementations become more mature.
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